Problem 1:
We can think of x_{n} an $\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \left\lvert\, \begin{array}{l}x_{0}^{2}+\ldots+x_{n}^{2}=1,0 \\ x_{0}=0 \text { and } x_{1}^{2}+\ldots+x_{n}^{2} \leqslant 1\end{array}\right.\right\}$.
If $u=X_{n} \cap\left\{x_{n}>1 / 4\right\}, v=x_{n} \cap\left\{x_{n}<3 / 4\right\}$, then u, v are contractible, and $X_{n} \cap\left\{x_{n}=\frac{1}{2}\right\} \subset U \cap V$ is a strong deformation retract. However,

$$
x_{n} \cap\left\{x_{n}=\frac{1}{2}\right\} \cong\left\{\left(x_{0}, \ldots, x_{n-1}\right) \left\lvert\, \begin{array}{l}
x_{0}^{2}+\ldots+x_{n-1}^{2}=3 / 4 \text { or } \\
x_{0}=0 \text { and } x_{0}^{2}+\ldots+x_{n}^{2}-1 \leq 3 / 4
\end{array}\right.\right\}
$$

which is homomorphic to X_{n-1}. The Mayer vietoris sequence tells us that $\tilde{H}_{i+1}\left(x_{n}\right) \cong \tilde{H}_{i}\left(x_{n-1}\right) \quad \forall i, n$. Since $x_{0}=\{p+\} \cup\{p+\} \cup\{p+\}$,

$$
\hat{H}_{i}\left(X_{n}\right)= \begin{cases}\mathbb{Z}^{2} & \text { if } i=n \\ 0 & \text { otherwise }\end{cases}
$$

Problem 2:
Thinking of \mathbb{R}^{2} as the $\operatorname{disk} \overline{D(0,1)} / \sim$, where \sim identifier antipodal points in the boundary, and let $u=D(0,3 / 4), V=\mathbb{R} \mathbb{P}^{2}, \overline{D(0,1 / 4)}$ then U, v are open, they cover \mathbb{R}^{2}, U is contractible, $V \sim \mathscr{S}^{1}$ and $U \cap V \sim \mathbb{S}^{1}$. The reduced M.V sequence reads:

$$
0 \longrightarrow H_{2}\left(\mathbb{R} \mathbb{P}^{2}\right) \longrightarrow H_{1}(u \cap v) \xrightarrow{\phi} H_{1}(v) \longrightarrow H_{1}\left(\mathbb{R}^{2}\right) \longrightarrow 0
$$

where ϕ maps the generator of $H_{1}(u, v)$ to 2 the generator of $H_{1}(v)^{*}$. so $H_{2}\left(\mathbb{R} \mathbb{P}^{2}\right) \cong \operatorname{ker} \phi=0, H_{1}\left(\mathbb{R} \mathbb{P}^{2}\right) \cong \operatorname{coken} \phi=\mathbb{Z} / 2, H_{0}\left(\mathbb{R} \mathbb{P}^{2}\right)=\mathbb{Z}$ and the rest of the groups vanish.
 visualization of why $\phi(b)=2 a$

Problem 3:
Similarly to Problem 2, let $U=D(0,3 / 4), V=K \backslash D(0,1 / 4)$. This time,
 $V \sim \mathbb{S}^{\prime} v \mathbb{S}^{\prime}, U \cap V \sim \mathbb{S}^{\prime}$ and U is contractible. The MV sequence is the same, but this time,

$$
\phi: H_{1}(u \cap v) \longrightarrow H_{1}(v)=\mathbb{Z} a+\mathbb{Z} b
$$

sends γ to $b+a+b-a$, so $H_{2}(K) \cong \operatorname{ken}(\phi)=0 H_{1}(K) \cong \operatorname{coken} \phi=\mathbb{Z} \oplus \mathbb{Z} / 2$, $H_{0}(k)=\mathbb{Z}$ and the rest of the groups vanish

Problem 4:
Let U, V be as in Problem 3. Now we have $u \cap v \sim \mathbb{S}^{\prime}, V \sim V_{i=1}^{2 g} \mathbb{S}^{1}$, and U is contractible. The map

$$
\phi: H_{1}(u \cap v) \longrightarrow H_{1}(v) \cong \oplus_{i=1}^{\mathcal{Z}} \mathbb{Z} a_{i} \oplus \mathbb{Z} b_{i}
$$

sends γ to $a_{1}+b_{1}-a_{1}-b_{1}+\ldots+a_{g}+b_{g}-a_{g}-b_{g}=0$. Therefore,

$$
H_{i}\left(\Sigma_{g}\right)=\left\{\begin{array}{l}
\mathbb{Z} \text { if } i=0,2 \\
\mathbb{Z}^{2 g} \quad i j \quad i=1 \\
0 \quad \text { ot hermine }
\end{array}\right.
$$

Problem 5
Let's start by trying to approach the homology groups of $M \# \Sigma_{1}$, where M is any surface.
If A is the disk in $M \# \Sigma_{1}$ that we use to glue the components, it is not hard to see that $\left(A, M \# \Sigma_{1}\right)$ is a good pain, and $M \# \Sigma_{1} / A \cong M_{v} \Sigma_{1}$. Using Problem 7, we find exact sequences
(4) $\tilde{H}_{i}{ }^{\prime \prime}(A) \longrightarrow \tilde{H}_{i}\left(M \# \Sigma_{1}\right) \longrightarrow \tilde{H}_{i}(M) \oplus \tilde{H}_{i}\left(\Sigma_{1}\right) \longrightarrow \tilde{H}_{i-1}^{\circ}(A)$ for $i \geqslant 3$ and
(B) $\widetilde{H}_{0}\left(M \# \Sigma_{1}\right) \rightarrow \widetilde{H}_{2}(M) \oplus \tilde{H}_{2}\left(\Sigma_{1}\right) \xrightarrow{\beta} \tilde{H}_{1}(A) \xrightarrow{\gamma} \widetilde{H}_{1}\left(M \# \Sigma_{1}\right) \xrightarrow{\varepsilon} \widetilde{H}_{1}(M) \oplus \tilde{H}_{1}\left(\Sigma_{1}\right) \rightarrow 0$

Claim: The composition $\tilde{H}_{2}\left(\Sigma_{1}\right) \xrightarrow{(0, i d)} \tilde{H}_{2}(M) \oplus \tilde{H}_{2}\left(\Sigma_{1}\right) \xrightarrow{B} \tilde{H}_{1}(A)$ is the map α in the LES of $\left(\Sigma_{1} \operatorname{int}(D), A\right)$, under the identification $\frac{\Sigma_{1}, \operatorname{int}(D)}{A} \simeq \Sigma_{1}$.
Σ,

(*) $\tilde{H}_{2}\left(\Sigma_{1} \backslash \operatorname{int}(D)\right) \rightarrow \tilde{H}_{2}\left(\Sigma_{1}\right) \xrightarrow{\alpha} \tilde{H}_{1}(A) \longrightarrow \tilde{H}_{1}\left(\Sigma_{1}, \operatorname{int}(D)\right)$
In particular, B is surjective.
Proof: $\left(\Sigma_{1}, \operatorname{int}(D), A\right) \xrightarrow{i}\left(M \# \Sigma_{1}, A\right)$ is a commutative diagram

$$
\left(\Sigma_{1}^{\downarrow q} p^{t}\right) \xrightarrow{j}\left(M_{v} \downarrow_{1}, p^{t}\right)
$$

of pains, and we get the commutative diagram, since $\left.i\right|_{A}=i d$.

$$
\begin{aligned}
& \tilde{H}_{2}\left(\Sigma_{1} \operatorname{lint}(D), A\right) \xrightarrow{\partial_{2}} \widetilde{H}_{1}(A) \\
& \tilde{H_{2}}\left(\Sigma_{1}\right) \underset{\delta}{\approx} \tilde{H}_{2}^{q}\left(\Sigma_{1}, p+\right) \\
& \stackrel{i}{*}^{i^{2}} \widetilde{H}_{2}\left(M \not a_{1} \Sigma_{1}, A\right) \\
& (i d, 0)=j_{*}, \\
& \cong \mathrm{P}_{*} \\
& \widetilde{H}_{2}\left(\Sigma_{1}, p t\right) \oplus \bar{H}_{2}(M, p t)
\end{aligned}
$$

where $\partial_{1}, \partial_{2}$ are the connecting homomorphisms of the pairs. From this the first statement follows. For the second ave, it is enough to show that α is surjective, but we know all the groups in (A):
$0 \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow \mathbb{Z}^{2}$ is exact, so cover $(\alpha) \longrightarrow \mathbb{Z}^{2}$, but coker (α) is a finite group, so the only way for such an injection to exist is if coke $(\alpha)=0$; ie if α is sujective. D.
Now let $M=\Sigma_{g-1}$, and assume that we know that $H_{i}\left(\Sigma_{g-1}\right)= \begin{cases}\mathbb{Z} \text { if } i=0,2 \\ \mathbb{Z}^{2} g-2 & i f \\ i=1 \\ 0 & \text { otherwise }\end{cases}$ the sequences (A) on top of the page show that $H_{i}\left(\Sigma_{g-1} \# \Sigma_{1}\right)=0$ if $i \geqslant 3$.

If we look at sequence (B), we see that $\beta: \mathbb{Z}^{2} \longrightarrow \mathbb{Z}$ is ourjective, and by exactness we obtain that

- $\tilde{H}_{2}\left(\Sigma_{g-1} \# \Sigma_{1}\right) \cong \operatorname{ker}(\beta)=\mathbb{Z}$
- $\operatorname{coker}(\beta)=0 \Rightarrow \operatorname{ker}(\gamma)=H_{1}(A) \Rightarrow \varepsilon$ is infective $\Rightarrow \varepsilon$ is an isomorphism, so

$$
\tilde{H}_{1}\left(\Sigma_{g-1} \# \Sigma_{1}\right) \simeq \tilde{H}_{1}\left(\Sigma_{g-1}\right) \oplus \tilde{H}_{1}\left(\Sigma_{1}\right)=\mathbb{Z}^{2 g}
$$

Finally, $H_{0}\left(\Sigma_{g-1} \# \Sigma_{1}\right)=\mathbb{Z}$ because it is connected.
Problem 6.
A generation of the 0 -th reduced homology of $S^{0}=\cdot p_{0} \cdot p_{1}$ is $\left[p_{0}\right]-\left[p_{1}\right]$. The bandary map $\tilde{H}_{1}\left(\mathbb{S}^{1}\right) \longrightarrow \tilde{H}_{0}\left(\mathbb{S}^{0}\right)$ sends the cycle $\left[\gamma_{0}\right]+\left[\gamma_{1}\right]$ to $\partial \gamma_{0}=\left[p_{0}\right]-\left[p_{1}\right]$, so $\left[\gamma_{0}\right]+\left[\gamma_{1}\right]$ is a generator too:

The boundary map sends $\left[c_{0}\right]+\left[c_{1}\right]+\left[c_{2}\right]+\left[c_{3}\right]$ to $\partial\left(c_{0}\right)+\partial\left(c_{1}\right)=\left[\gamma_{0}\right]+\left[\gamma_{1}\right]$:

Problem 7:

If $W_{1}=X v_{p} v, W_{2}=U v_{p} Y, W_{1}, W_{2}$ are open sets in $X v Y_{1}$ and the homotopies $V \sim p, U \sim p$ imply that $W_{1} \sim X, W_{2} \sim Y$ and $W_{1} \cap W_{2}=U v_{p} V \sim p$. Reduced MV then reads: $\begin{gathered}\tilde{H}_{i}\left(W_{1} \cap W_{2}\right) \\ 0 \\ 0\end{gathered}$

