Problem 1:

We can think of X_n an $\{(x_0, ..., x_n) \in \mathbb{R}^{n+1} | \begin{array}{l} x_0^2 + ... + x_n^2 \in I, \text{ or } \\ x_0 = 0 \text{ and } x_1^2 + ... + x_n^2 \in I^{\frac{1}{2}} \\ \end{array}$ If $U = X_n \cap \{x_n > \frac{1}{4}\}, V = X_n \cap \{x_n < \frac{3}{4}\}, \text{ then } U, V \text{ are contractible,} \\$ and $X_n \cap \{x_n = \frac{1}{2}\} \subset U \cap V \text{ is a otrong deformation retract. However,} \\ \qquad X_n \cap \{x_n = \frac{1}{2}\} \cong \{(x_0, ..., x_{n-1}) | \begin{array}{l} x_0^2 + ... + x_{n-1}^2 = \frac{3}{4} & \text{or } \\ x_0 = 0 \text{ and } x_0^2 + ... + x_{n-1}^2 \in \frac{3}{4} \\ x_0 = 0 \text{ and } x_0^2 + ... + x_{n-1}^2 \in \frac{3}{4} \\ \end{array}$ which is however price to X_{n-1} . The Mayer Vietoris sequere tells us that $\widetilde{H}_{i+1}(X_n) \cong \widetilde{H}_i(X_{n-1}) \quad \forall i, n$. Since $X_0 = \{pt_1^2 \cup 2pt_1^2 \cup 2pt_2^2, \\ \widetilde{H}_i(X_n) = \begin{cases} \mathbb{Z}^2 & i \\ 0 & \text{ otherwise} \end{cases}$

Problem 2:

Thinking of \mathbb{RP}^2 as the disk $\overline{D(0,1)}/\sim$, when ~ identifier antipodal points in the boundary, and let U = D(0, 3/4), $V = \mathbb{RP}^2 \setminus \overline{D(0, 1/4)}$ then U, V are open, they over \mathbb{RP}^2 , U is contractible, $V \sim S^2$ and $U \cap V \sim S^2$. The reduced M.V sequence reads:

- $\begin{array}{l} 0 \longrightarrow H_2(\mathbb{RP}^2) \longrightarrow H_1(\mathbb{U} \cap \mathbb{V}) \stackrel{\phi}{\longrightarrow} H_1(\mathbb{V}) \longrightarrow H_1(\mathbb{RP}^2) \longrightarrow 0 \\ & \text{ where } \phi \text{ maps the generator of } H_1(\mathbb{U} \cap \mathbb{V}) \text{ to } \mathcal{Z} \text{ the generator of } H_1(\mathbb{V}), \\ & \text{ so } H_2(\mathbb{RP}^2) \cong \ker \phi = 0, \ H_1(\mathbb{RP}^2) \cong \operatorname{coker} \phi = \mathbb{Z}/2, \ H_0(\mathbb{RP}^2) = \mathbb{Z} \text{ and the sest} \\ & \text{ of the groups vanish.} \end{array}$
 - * visualization of why $\phi(b) = 2a$

Problem 3:

sendo γ to b+a+b-a, so $H_2(K) \cong ken(\phi) = 0$ $H_1(K) \cong coken \phi = \mathbb{Z} \oplus \mathbb{Z}/2$, $H_0(K) = \mathbb{Z}$ and the sent of the groups samish

Problem 4:

Let U, V be as in Problem 3. Now we have $U \cap V \sim S^{1}, V \sim \bigvee_{i=1}^{2} S^{1}$, and U is contractible. The map $\phi: H_{1}(U \cap V) \longrightarrow H_{1}(V) \cong \bigoplus_{i=1}^{2} \mathbb{Z}a_{i} \oplus \mathbb{Z}b_{i}$ sends γ to $a_{1}+b_{1}-a_{2}-b_{1}+\ldots+a_{g}+b_{g}-a_{g}-b_{g}=0$. Therefore, $H_{i}(\Sigma_{g}) = \begin{cases} \mathbb{Z} \text{ if } i=0,2\\ \mathbb{Z}^{2} \text{ if } i=1\\ 0 \text{ otherwise} \end{cases}$

Problem 5

Let's start by trying to approach the homology groups of $M \# \Sigma_1$, where M is any ourface. If A is the disk in $M \# \Sigma_1$ that we use to glue the components, it is not hard to see that $(A, M \# \Sigma_1)$ is a good pair, and $M \# \Sigma_1 / A \cong M \vee \Sigma_1$. Using Problem 7, we find exact sequences

(A)
$$\widetilde{H}_{i}(A) \longrightarrow \widetilde{H}_{i}(M\#\Sigma_{1}) \longrightarrow \widetilde{H}_{i}(M) \oplus \widetilde{H}_{i}(\Sigma_{1}) \longrightarrow \widetilde{H}_{i-1}^{\circ}(A)$$
 for $i \ge 3$
and
(B) $\rightarrow \widetilde{H}_{2}(M\#\Sigma_{1}) \rightarrow \widetilde{H}_{2}(M) \oplus \widetilde{H}_{2}(\Sigma_{1}) \xrightarrow{\beta} \widetilde{H}_{1}(A) \xrightarrow{T} \widetilde{H}_{1}(M\#\Sigma_{1}) \xrightarrow{\Sigma} \widetilde{H}_{1}(M) \oplus \widetilde{H}_{1}(\Sigma_{1}) \rightarrow \sigma$
Claim: The composition $\widetilde{H}_{2}(\Sigma_{1}) \xrightarrow{(\phi,i)} \widetilde{H}_{2}(M) \oplus \widetilde{H}_{2}(\Sigma_{1}) \xrightarrow{B} \widetilde{H}_{1}(A)$ is the
map at in the LES of $(\Sigma_{1} \setminus int(D), A)$, under the identification $\frac{\Sigma_{1}, int(D)}{A} \cong \Sigma_{2}$
(d) $\widetilde{H}_{2}(\Sigma_{1} \setminus int(D)) \rightarrow \widetilde{H}_{2}(\Sigma_{1}) \xrightarrow{d} \widetilde{H}_{1}(A) \longrightarrow \widetilde{H}_{1}(\Sigma_{1} \setminus int(D))$
In particular, B is surjective.
Proof. $(\Sigma_{1} \setminus int(D), A) \xrightarrow{i} (M \# \Sigma_{1}, A)$ is a commutative diagram
 $\downarrow^{q} \qquad \downarrow^{p}$
 $(\Sigma_{2} \setminus int(D), A) \xrightarrow{i} (M \vee \Sigma_{2}, pt)$
of pairs, and we get the commutative diagram, since $i|_{A} = id$.
 $\widetilde{H}_{2}(\Sigma_{1} \setminus int(D), A) \xrightarrow{i} (\Xi_{2}, pt)$
 $\widetilde{H}_{2}(\Sigma_{1} \oplus \widetilde{H}_{2}(\Sigma_{1}, pt)) \xrightarrow{i} (\Xi_{2}, pt)$
 $\widetilde{H}_{2}(\Sigma_{1}, pt) \oplus \widetilde{H}_{2}(M, pt)$
where \Im, \Im are the connecting homomorphisms of the pairs. From

where $\exists \cdot, \exists \cdot a$ are the connecting homomorphisms of the pairs. then this the first statement follows. For the second one, it is enough to show that d is surjective, but we know all the groups in (A): $0 \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow \mathbb{Z}^2$ is exact, so coker(a) $\longrightarrow \mathbb{Z}^2$, but coker(d) is a finite group, so the only way for such an injection to exist is if coker(d)=0; i.e if d is surjective. D.

Now let $M = \sum_{g-1}$, and assume that we know that $H_i(\sum_{g-1}) = \begin{cases} \mathbb{Z} & \text{if } i=0, z \\ \mathbb{Z}^{2g-2} & \text{if } i=1 \\ 0 & \text{otherwise} \end{cases}$ the sequences (A) on top of the page show that $H_i(\sum_{g-1} \# \Sigma_1) = 0$ if $i \ge 8$. If we look at requerce (B), we see that $\beta : \mathbb{Z}^2 \longrightarrow \mathbb{Z}$ is surjective, and by exactness we obtain that $\widetilde{H}_2(\Sigma_{g-1} \# \Sigma_1) \cong \ker(\beta) = \mathbb{Z}$ $\cdot \operatorname{coker}(\beta) = 0 \Longrightarrow \ker(\gamma) = H_1(A) \Longrightarrow \varepsilon$ is injective $\Longrightarrow \varepsilon$ is an isomorphism, so $\widetilde{H}_1(\Sigma_{g-1} \# \Sigma_1) \cong \widetilde{H}_1(\Sigma_{g-1}) \oplus \widetilde{H}_1(\Sigma_1) = \mathbb{Z}^{2g}$ Finally, $\operatorname{Ho}(\Sigma_{g-1} \# \Sigma_1) = \mathbb{Z}$ because it is connected.

Problem 6.

A generator of the 0-th reduced homology of $S^{\circ} = \cdot_{p_{0}} \cdot_{p_{1}}$ is $[p_{0}] - [p_{1}]$. The boundary map $\widetilde{H}_{1}(S^{1}) \longrightarrow \widetilde{H}_{0}(S^{\circ})$ sends the cycle $[T_{0}] + [T_{1}]$ to $\partial \gamma_{0} = [p_{0}] - [p_{1}]$, so $[\gamma_{0}] + [\tau_{0}]$ is a generator too:

The boundary map reach $[c_0]+[c_1]+[c_2]+[c_3]$ to $\partial(\omega)+\partial(c_1)=[\overline{p}_0]+[\overline{\sigma}_1]$: p_0 c_1 p_1 c_2 p_2 c_3 p_4 c_4 p_2 c_4 p_4 c_4 $c_$

Problem 7:

If $W_1 = X v_p V$, $W_2 = U v_p Y$, W_1 , W_2 are open sets in $X \vee Y$, and the homotopies $V \sim p$, $U \sim p$ imply that $W_1 \sim X$, $W_2 \sim Y$ and $W_1 \cap W_2 = U v_p V \sim p$. Reduced MV then reads: $\widetilde{H}_i(W_1 \cap W_2) \longrightarrow \widetilde{H}_i(X) \oplus \widetilde{H}_i(Y) \longrightarrow \widetilde{H}_i(X \cup Y) \longrightarrow \widetilde{H}_i(W_1 \cap W_2)$