
Solutions to Homework 7

1. (a) The map

gn : Rn+1\{0} −→ Sn

x 7−→ x

||x||
.

descends to a homeomorphism RPn → Sn/(x ∼ −x). The map

fn : Bn −→ RPn

x = (x1, . . . , xn) 7−→ [x1, . . . , xn,
√

1− |x|2]

descends to a homeomorphism (Bn/ ∼) → RPn, where x ∼ y in Bn if and only if

x = −y ∈ ∂Bn.

(b) RP 0 is a point and so it’s a CW-complex with one 0-cell. View RPn as Bn/ ∼. As

such, RPn can be obtained as a 2-cell Bn glued to ∂Bn/(x ∼ −x) along the boundary

via the projection ∂Bn → ∂Bn/(x ∼ −x). Note that

∂Bn/(x ∼ −x) ≈ Sn−1/(x ∼ −x) ≈ RPn−1.

Hence RPn is obtained by gluing precisely one n-cell to RPn−1. This provides CW-

structures as claimed by proceeding inductivly over

RP 0 ⊂ RP 0 ∪B1 ≈ RP 1 ⊂ RP 1 ∪B2 ≈ RP 2 ⊂ . . . .

The characteristic map for the k-cell ak is fak
:= fk : Bk → RP k ⊂ RPn. Note that

fak
is an embedding on Int(Bk). Moreover, fak

(∂Bk) = {[x1, . . . , xk, 0] ∈ RP k} ≈
RP k−1 ⊂ RPn. The attaching map is its restriction to ∂Bk:

f∂ak
: ∂Bk ≈ Sk−1 −→ RP k−1 ⊂ RPn.

(c) The cellular chain complex of RPn has one copy of Z in each degree 0 ≤ k ≤ n and is

0 in all the other degrees. For the k-cell ak consider the projection

pak
: RP k ≈

(
Bk/ ∼

)
→
(
Bk/∂Bk

)
≈ Sk.

The differential dk : Z −→ Z in degree 1 ≤ k ≤ n is given by multiplication with the

degree of the map pak−1
f∂ak

: Sk−1 → Sk−1, 1 ≤ k ≤ n. [0] ∈ Bk−1/∂Bk−1 ≈ Sk−1

has two preimages under pak−1
f∂ak

: N = (0, . . . , 0, 1) ∈ Sn−1 and S = (0, . . . , 0,−1) ∈
Sn−1. Near N , this map is an orientation-preserving homeomorphism. So the local

degree at N is 1. Near S, it is the antipodal map composed with an orientation-

preserving homeomorphism. So the local degree near S is (−1)k. Therefore,

deg(pak−1
f∂ak

) = 1 + (−1)k =

{
0, k odd,

2, k even

Suppose n is even. Then the cellular chain complex is

0→ Z ∗2−→ Z 0−→ . . .Z ∗2−→ Z 0−→ Z −→ 0
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with non-zero groups exactly in degrees 0, . . . , n, and thus we obtain

Hk(RPn;Z) ∼=


Z, k = 0

Z/2Z, k = 1, 3, . . . , n− 1

0 otherwise.

For n being odd, one computes similarly

Hk(RPn;Z) ∼=


Z, k = 0, n

Z/2Z, k = 1, 3 . . . , n− 2

0 otherwise.

An alternative solution can be found in Bredon, Chapter IV. 14.

2. Compactify R2 and consider the stereographic projection

π : S2 → R2 ∪ {∞}.

View the graph G in S2 by considering G̃ := π−1(G) ⊂ S2. G̃ defines a CW-structure on

S2 with one 0-cell for each vertex of G, one 1-cell for each edge of G and one 2-cell for each

face of G.

The Euler characteristic of S2 therefore is ξ(S2) = v− e+ f. On the other hand, ξ(S2) = 2,

as can been seen from singular homology. We conclude: v − e+ f = 2.

3. We view T 3 = I3/ ∼ as the quotient space of the cube I3 under the relation that identifies

opposite faces of the boundary. From this description, one sees that T 3 has a CW complex

structure with one 0-cell a (any of the corner points—note that these get identified under

I3 → T 3), three 1-cells b1, b2, b3 (the line segments on the coordinate axes), three 2-cells

c1, c2, c3 (the squares in the coordinate planes), and one 3-cell d (all of I3); in all these cases

the attaching maps is given by restriction of the quotient map I3 → T 3.

The corresponding cellular chain complex is

0→ Z ∂3−→ Z3 ∂2−→ Z3 ∂1−→ Z→ 0

with linear maps ∂i which we now compute. We have ∂1 = 0 since the attaching maps

fbi : I → (T 3)(0) = {a} take both boundary points 0, 1 ∈ I to the same point (cf. the remark

in Bredon after Theorem 10.3). We also have ∂2 = 0, since all maps pbif∂cj : ∂I2 → S1 have

degree 0 (by the same argument as for the standard CW complex structure of the 2-torus;

see Bredon example 10.5).

As for ∂3, consider any of the maps pcif∂d : ∂I3 → S2. Note that there are two opposite

faces of ∂I3 in whose interiors this map restricts to a homeomorphism, and that the map

collapes the rest of ∂I3 to a point in S2. The degree of pcif∂d is hence the sum of the two

local degrees at any two points q, q′ in the two first-mentioned faces which get mapped to the

same point in T 3. Now note that the restrictions of pcif∂d to these faces are obtained from

one another by precomposing with an orientation-reversing map (for orientations induced

from an orientation of ∂I3); therefore the sum of these local degrees vanishes. It follows that

also ∂3 = 0.

Summing up, we obtain

Hi(T
3) ∼=

{
Z, i = 0, 3,

Z3, i = 1, 2.
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4. (a) One possible CW complex structure has two 0-cells a1, a2 (the north and south poles),

two 1-cells b1, b2 (the line segment mentioned in the description of X and another

segment on the sphere connecting the poles), and one 2-cell c. We then have

deg(pa2f∂bj ) = 1, deg(pa1f∂bj ) = −1

for j = 1, 2, supposing that the attaching maps fbj : I → X(0) are such that both

map 0 ∈ ∂I to a1 and 1 ∈ ∂I to a2 (cf. the remark in Bredon after Theorem 10.3).

Moreover, we have

deg(pbjf∂c) = 0

for j = 1, 2, as both maps pbjf∂c are null-homotopic. The cellular chain complex is

therefore

0→ Z 0−→ Z2 ∂1−→ Z2 → 0, ∂1 =

(
−1 −1

1 1

)
: Z2 → Z2.

Both the kernel and the cokernel of ∂1 are 1-dimensional, and therefore

Hk(X) ∼=

{
Z, k = 0, 1, 2,

0 otherwise.

(Note that there is an even simpler CW complex structure for X with exactly one k-cell

for k = 0, 1, 2.)

(b) X ' S2 ∨ S1 implies H̃∗(X) = H̃∗(S
2 ∨ S1) ∼= H̃∗(S

2) ⊕ H̃∗(S
1); hence H̃2(X) =

H̃1(X) = Z and H̃0(X) = 0, from which the result above follows by the definition of

reduced homology.

Alternatively: Excising a neighbourhood of the point joining the two spheres yields

H̃∗(X) ∼= H∗(D
2, ∂D2)⊕H∗(I, ∂I) from which the result above again follows easily.

5. We assume wlog that p and q are coprime (otherwise divide by their greatest common

divisor), which implies that there exist integers a, b such that ap− bq = 1. Hence the matrix

Ψ =

(
a q

b p

)
lies in SL(2,Z) and therefore induces a homeomorphism ψ : T 2 → T 2 of T 2 = R2/Z2. Note

that Ψ−1 ∈ SL(2,Z) takes the line given by px = qy to the line given by x = 0, because Ψ

takes (0, 1) to (q, p) (and these vectors generate the two lines). Therefore ψ−1 takes C to the

curve C ′ that’s the image of x = 0 under R2 → T 2 and which is the 1-cell of the standard

CW complex structure on T 2. Thus T 2/C has a CW complex structure with one cell ak
in dimensions k = 0, 1, 2, and the corresponding cellular differential vanishes (by the same

reasons as for T 2). Therefore

Hk(T 2/C) ∼=

{
Z, k = 0, 1, 2

0 otherwise.

6. As discussed in class, RPn has a CW complex structure with exactly one k-cell for every

k = 0, . . . , n. Therefore RPn/RPm has a CW complex structure with one 0-cell a0 and one

k-cell ak for every k = m+ 1, . . . , n. As in the case RPn, we have

deg(pak−1
f∂ak

) = 1 + (−1)k

{
0, k odd,

2, k even.
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Thus the cellular chain complex C∗(RPn/RPm) has one copy of Z in degrees k = 0 and k =

m+ 1, . . . , n, and the cellular differential Ck(RPn/RPm)→ Ck−1(RPn/RPm) is 1 + (−1)k

for all k = m+ 2, . . . , n and vanishes in all other cases. The homology is therefore

Hk(RPn/RPm) ∼=



Z, k = 0

Z, k = m+ 1 (if m+ 1 is even),

Z, k = n (if n is odd),

Z2, m+ 1 ≤ k < n and k odd,

0, otherwise.
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