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Goal of topological data analysis:

Leverage machinery of algebraic topology to
develop tools for studying ‘qualitative’ features of
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Shape of Data

Tendrils/Flares

Breast Cancer Study [Nicolau, Levine, Carlsson 2011]
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Why Topology?

Three key ideas:

• Invariance under deformation

• Coordinate freeness

• Compressed representations
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How to deal with shape?

Two tasks:
• Measure Shape

• Represent Shape
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Measuring Shape

Homology is a formalism for measuring shape...

b1 = 1 b1 = 0 b1 = 2
b2 = 0 b2 = 1 b2 = 1

The extension of homology to more general setting
including point clouds is called persistent homology.

The concept emerged independently in the work of Frosini,
Ferri, and collaborators in Bologna, Italy, of Robins at Boulder,
Colorado, and of Edelsbrunner, Letscher and Zomorodian at
Duke, North Carolina.
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Persistent Homology
A finite metric space X has no interesting topology.

Let U(X,R) be the union of balls of radius R centered at the
points of X. For any R > 0 and i ≥ 0, i-th Betti number of
U(X,R) gives us a qualitative descriptor of X.
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b0 = 1 b0 = 1
b1 = 2 b1 = 1
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Persistent Homology

Problems with this descriptor

• No canonical choice of R.

• Invariant is unstable with respect to perturbation of data
or small changes in R.

• Does not distinguish ‘small’ holes from ‘big’ ones.
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Persistent Homology

• Consider not only single reconstruction U(X,R) of X, but
a 1-parameter family of reconstructions

F (X) = {U(X, r)}r∈[0,∞)

and inclusion maps U(X, r) ↪→ U(X, r ′) whenever r ≤ r ′.

• Apply i-dimensional homology functor Hi with field
coefficients

• Obtain a family of vector spaces {Vr}r and linear maps
between them. Call such algebraic structures persistence
vector spaces.

Can we classify persistence vector spaces that arise from
filtrations up to isomorphism?
Yes, by barcodes.
(Computing Persistent Homology, Carlsson and Zomorodian)
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Persistent Homology



A Short
Introduction

to TDA
(Topological

Data Analysis)

Sara Kalǐsnik
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Persistent Homology

Barcode for

H1:

For each interval:

• Left endpoint is the index at which the hole is born

• Right endpoint is index at which hole dies

• Length of interval is the lifetime of a hole in filtration
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Applications of Persistent
Homology

Natural Scene Statistics/Image Processing
(Local structure of spaces of natural images by G. Carlsson,
Vin de Silva, T. Ishkanov and A. Zomorodian)
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Natural Scene Statistics/Image
Processing

A long time ago in a country far far away (the Netherlands) J.
van Hateren and A. van der Schaaf were taking photos in a
town called Groningen and in the surrounding countryside.
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Natural Scene Statistics/Image
Processing

An image taken by black and white digital camera can be
viewed as a vector, with one coordinate for each pixel.

Typical camera uses tens of thousands of pixels, so images lie
in a very high dimensional pixel space, RP .

David Mumford: What can be said about the set of images
I ⊆ P lying within RP? Can it be modeled as a submanifold or
a subspace of RP?
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Natural Scene Statistics/Image
Processing

The whole manifold of images is not accessible in a useful way,
a space of small image patches might in fact contain quite
useful information.

Solution: observe 3× 3 patches.



A Short
Introduction

to TDA
(Topological

Data Analysis)

Sara Kalǐsnik
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Natural Scene Statistics/Image
Processing

Klein Bottle



J. Perea, G. Carlsson: Compression based on the Klein bottle
mode (Kleinlets).



A Short
Introduction

to TDA
(Topological

Data Analysis)

Sara Kalǐsnik
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Applications of Persistent
Homology

• 1970s molecular phylogenetic analysis based on nucleotide
and protein sequences

• 1977 Carl Woese identifies archaea as new domain in life
• since 1990s a true revolution in genomic sequencing

techniques providing hard data for evolutionary biology
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Applications of Persistent
Homology

Viral Evolution (Topology of viral evolution by J.M. Chan, G.
Carlsson, and R. Rabadan)
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Representing Shape
A very popular TDA method for representing shape is called
mapper and was developed by G. Singh, F. Memoli and G.
Carlsson.
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Representing Shape

Suppose we have a covering of a circle:
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Representing Shape

We assign a vertex to each connected component of this
covering
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Representing Shape

When precisely two connected components intersect, we
connect the corresponding vertices with an edge.

When more than two, add a face of appropriate dimension.
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Representing Shape

Voila!
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Representing Shape

Topological version of Mapper

Setting:
We are given a space X equipped with a continuous map
f : X → Z to a parameter space Z , and that the space Z is
equipped with a covering U = {Uα}α∈A for some finite
indexing set A.

• Since f is continuous, the sets f −1(Uα) form an open
covering of X .

• We write f −1(Uα) = ∪jαj=1V (α, i) where jα is the number

of connected components of f −1(Uα). We write U for the
covering of X obtained by taking these connected
components.

• Represent the topological space by a nerve of U.
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Representing Shape

The Statistical version of Mapper

• Define a reference map f : X → Z , where X is the given a
point cloud and Z is the reference metric space.

• Select a covering U of Z .

• If U = {Uα}α∈A, then construct the subsets
Xα = f −1(Uα).

• The analog of taking connected components in the point
cloud world is clustering. Clusters form a covering of X
parametrized by pairs (α, c), where α ∈ A and c is one of
the clusters of Xα.

• Construct a graph whose vertex set is the set of all
possible such pairs (α, c), and where an edge connects
(α1, c1) and (α2, c2) if and only if the corresponding
clusters have a point in common.
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Representing Shape

The Statistical version of Mapper

Example:
Consider point cloud data
which is sampled from a noisy
circle in R2, and the filter
f (x) = ||x − p||2, where p is
the left most point in the data.

Vertices are colored by the
average filter value.
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Mapper

The Miller-Reaven diabetes study

G.M. Reaven and R.G. Miller conducted a diabetes study at
Stanford in the 1970’.

145 patients were included and six quantities were measured:
age, relative weight, fasting plasma glucose, area under the plasma

glucose curve for the three hour glucose tolerance test(OGTT), area

under the plasma insulin curve for OGTT, steady state plasma

glucose response.
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Mapper

The Miller-Reaven diabetes study

If we take the filter to be a density estimator, we get the
following representations for two different resolutions:

Red is indicative of high density, and blue of low. The size of
the node and the number indicate the size of the cluster.
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Breast cancer data
What should the filter be?

• Take linear combinations of normal expression data and
denote the subspace they span by N.

• Decompose the original data - vector ~T into normal-like
expression, ~Nc .T , which is the projection onto N.

• The disease, deviation ~Dc .T from normal-like expression,
is defined to be the difference between diseased tissue
expression and normal-like expression.
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denote the subspace they span by N.

• Decompose the original data - vector ~T into normal-like
expression, ~Nc .T , which is the projection onto N.
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Breast cancer data
The family of functions we take as filters is

fp,k( ~V ) = [
∑
|gr |p]

k
p

where ~V = 〈g1, g2, . . . , gs〉 and coordinates gi are individual
genes.
If k = 1, p = 2, the function computes standard (Euclidean)
norm of a vector.
Essentially, all these different filter functions, fp,k , measure the
overall amount of deviation from the normal state.
The effect of the different choices of p determining the choice
of Lp norm is that, for larger values of p the weight of genes
with larger expression levels is greater.
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Breast cancer data

Both ER+ tumors (Estrogen Receptor positive) showed a 100%
survival rate, with no recurrence or death from the disease.
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Representing Shape

Type 2 Diabetes

Current clinical definitions classify diabetes into three major
subtypes: type 1 diabetes (T1D), T2D, and maturity-onset
diabetes of the young.

Differences among T2D patients suggest several T2D subtypes.

Li Li, Wei-Yi Cheng, Benjamin S. Glicksberg, Omri Gottesman,
Ronald Tamler, Rong Chen, Erwin P. Bottinger, and Joel T.
Dudley (Icahn School of Medicine at Mount Sinai) use a
topology-based approach.





A Short
Introduction

to TDA
(Topological

Data Analysis)

Sara Kalǐsnik
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Applied Algebraic Topology
Research Network

I am one of the co-director of the Applied Algebraic Topology
Research Network, which hosts a weekly Online Seminar.
Recordings of our seminar are available at our YouTube
Channel, which has over 6000 YouTube subscribers.


