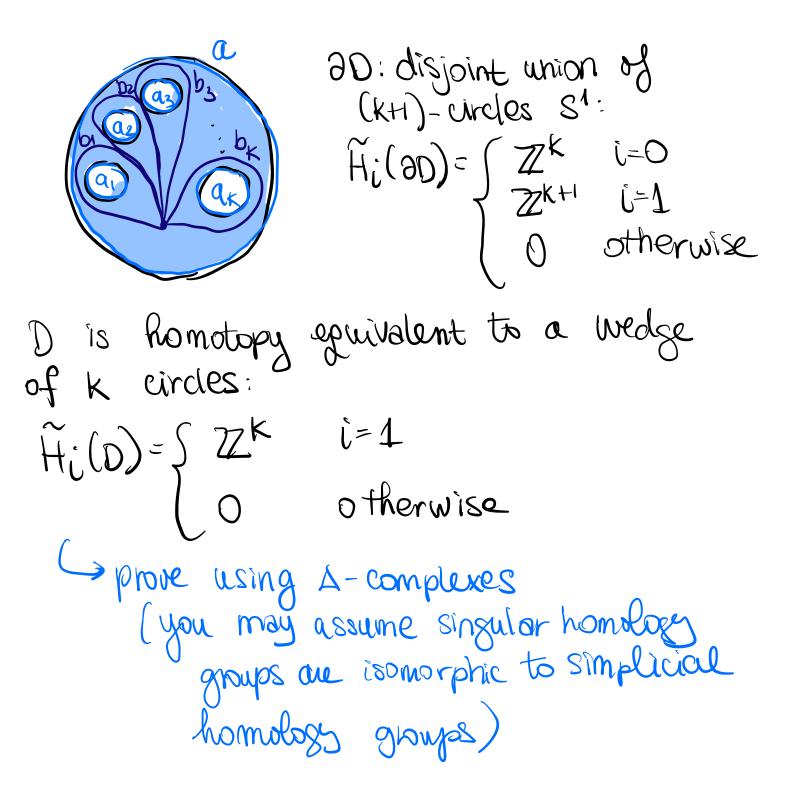
Additional Exercises, Sheet 3, #5 Let D be a 2-disc with k open discs removed. Compute the howology groups of the pair (D, 2D).



Ly It is also true that: For a wedge sum VX_{λ} the inclusions $i_{\lambda}: X_{\lambda} \subseteq VX_{\lambda}$ induce an isomorphism $\bigoplus i_{\lambda_{\star}}: \bigoplus H_n(x_{\lambda}) \to H_n(VX_{\lambda})$, provided that the wedge sum is formed at basepoints $X_{\lambda} \in X_{\lambda}$ st. the pairs $(X_{\lambda}, X_{\lambda})$ are good, i.e. X_{λ} is a strong def. retract of a nerghborhood of $X_{\lambda} \vee In X$. (Hatcher, page 126-coming soon)

LES
$$\rightarrow \mathcal{H}_{n}(\partial D) \rightarrow \mathcal{H}_{n}(D) \rightarrow \mathcal{H}_{n}(D,\partial D) \rightarrow \mathcal{H}_{n-1}(\partial D) \rightarrow \mathcal{H}_{n-1}$$

When
$$i \geq 3$$

 $H_i(\partial D) \rightarrow H_i(D) \rightarrow H_i(D_i\partial D) \rightarrow H_{i-1}(\partial D) \rightarrow H_{i-1}(D) \rightarrow H_{i-$

is trivial,
$$\partial_{4}^{1}$$
 is also surjective &
therefore an isomorphism.
 \Rightarrow Hr $(D, \partial D) \cong H_{0}(\partial D) \cong ZZ^{k}$.
Finally, Ho $(D, \partial D) = 0$
 $(0 \rightarrow H_{0}(D, \partial D) \rightarrow 0 \rightarrow 0$ is exact).
So
 $H_{1}(D, \partial D) = \begin{cases} ZZ & i=2\\ ZZ^{k} & i=1\\ 0 & otherwise \end{cases}$