we can prove the following theorem [For this part we follow Hatcher]

THEOREM
If two maps $f, g: x \rightarrow y$ are homotopici, then they induce the same homomorphism

$$
f_{*}=g_{x}: H_{n}(x) \rightarrow H_{n}(7)
$$

In particalan, if f is a homotopy equivalence, then f_{*} is an isomorphism for all n.
Proof
The essential ingredient of the proof is to subdivide $\Delta^{n} \times I$ into simplices.

For a general n :
Let $\Delta^{n} \times\{0\}=\left[v_{0}, \ldots, v_{n}\right]$ and $\Delta^{1} \times\{1\}=\left[w_{0}, \ldots, w_{1}\right]$, where v_{i} and w_{i} have the same image under the projection $\Delta^{n} \times I \rightarrow \Delta^{n}$.
We pass from $\left[k, \ldots, v_{n}\right]$ to $\left[w_{0}, \ldots, w_{n}\right]$ by interpolating a sequence of n-simplices each obtained from the preceding one by moving one vertex $x V_{i}$ up to W_{i}, starting with V_{n} and working backwards to Vo.

First step: $\left[v_{0}, \ldots, v_{n}\right] \rightarrow\left[v_{0}, ., v_{n-1}, \omega_{n}\right]$
Second step: $\left[v_{0}, \ldots, v_{n-1}, w_{n}\right] \rightarrow\left[v_{0}, w_{n-1}, w_{n}\right]$

$$
\left[v_{1}, \ldots v_{i}, w_{i+1}, w_{n}\right] \rightarrow\left[v_{0}, v_{i-1}, w_{i}, w_{n}\right]
$$

The region between these two simplices is exactly the $(n+1)-s x$ $\left[V_{0}, \ldots, V_{i}, w_{i}, \ldots, w_{n}\right]$ which thar $\left[V_{0}, \ldots, V_{i}, w_{i+1}, \ldots, w_{n}\right]$ as a lower face and $\left[v_{0}, v_{i-1}, w_{i}, w_{n}\right]$ as an upper face.

$$
\left.\begin{array}{l}
{\left[v_{0}, v_{1}\right] \rightarrow} \\
{\left[v_{0}, w_{1}\right] \rightarrow} \\
{\left[w_{0}, w_{1}\right]}
\end{array}\right\} \begin{aligned}
& \text { sequence } \\
& \text { of } 1- \\
& \text { simplices }
\end{aligned}
$$

Regions in between that are 2-simplices: $\left[v_{0}, v_{1}, w_{1}\right],\left[V_{0}, w_{0}, w_{1}\right]$

$$
\begin{aligned}
& {\left[v_{0}, v_{1}, v_{2}\right] \rightarrow} \\
& {\left[v_{0}, v_{1}, w_{2}\right] \rightarrow} \\
& {\left[v_{0}, w_{1}, w_{2}\right] \rightarrow} \\
& {\left[w_{0}, w_{1}, w_{2}\right]}
\end{aligned}
$$

Regions in between that are 3-simplas: $\left[V_{0}, V_{1}, V_{2}, W_{2}\right]$

$$
\begin{aligned}
& {\left[v_{0}, v_{1}, w_{1}, w_{2}\right]} \\
& {\left[v_{0}, w_{0}, w_{1}, w_{2}\right]}
\end{aligned}
$$

Altogether, $\Delta^{n} \times I$ is the union of the $(n+1)$-simplices $\left[V_{0}, \ldots, V_{i}, w_{i}, \ldots, w_{n}\right]$, each intersecting the next in an m-simplex face.
Given a homotopy $F: X \times I \rightarrow Y$ from f to g we define

$$
P_{n}: S_{n}(x) \rightarrow S_{n+1}(y)
$$

a homomorphism of groups given on generators by the following formula.

$$
P(G)=\sum_{i=0}^{n}(-1) \underbrace{i} \underbrace{}_{\left[b_{1}\left(b \times i v_{1}, w_{j}, \ldots, w_{n}\right]\right.}
$$

these are singular $(n+1)$-simplices
this operator is called the PRISM OPERATOR.
We will show that prism operators satisfy the basic relation

To prove this relation we calculate

$$
\begin{aligned}
& \left.\partial P(Z)=\left.\sum_{u \leq i}(-1)^{i}(-1)^{j} F \cdot\left(b \times i d_{I}\right)\right|_{\left[v_{0},-V_{j}, \cdots, v_{i 1}\right.} W_{A}\right] \\
& +\left.\sum_{j \geq i}(-1)^{i}(-1)^{j+1} F_{0}\left(子 \times i d_{I}\right)\right|_{\left[v_{0}, v_{i}, w_{i}, \hat{w}_{j}, w_{i}\right)}
\end{aligned}
$$

The terms with $i=y$ in the two sums cancel except for $\left.F \circ\left(z \times i d_{I}\right)\right|_{\left[\hat{v_{0}}, w_{0}, \ldots, w_{n}\right], \text { which }}$ is $g \circ b=g_{c}(b)$, and $-F \cdot\left(b \times 1 d_{d}\right) \mid$ $\left[b_{0}, V v_{n} \omega_{n}\right]$
which is $-f_{0} \sigma=-f_{c}(\sigma)$.
the terms with icj are exactly - pa (b) since
$P \partial(G)=$

$$
\begin{aligned}
& \left.\sum_{i<j}(-1)^{i}(-1)^{j} F_{0}\left(z \times i d_{I}\right)\right|_{\left[v_{0}, v_{i}, w_{i} ; w_{j}, \hat{w}_{j}, \omega_{n}\right]}+ \\
& \left.\left.\sum_{i=j}(-1)^{I-(-1)}\right]^{j} F_{0}\left(6 \times i d_{I}\right)\right]_{\left[v_{1}, i, \hat{v}_{j}, v_{i j}, w_{2}\right]}
\end{aligned}
$$

Now we finish the proof of the theorem.
If $c \in S_{n}(x)$ is a cycle, then

$$
\begin{aligned}
g_{c}(c)-f_{c}(c) & =\partial P(c)+P \partial(c) \\
& =\partial P(c)
\end{aligned}
$$

since $\partial c=0$. This means that $g_{c}(c)-f_{c}(c)$ is a boundary and So $\left[g_{c}(c)\right]=\left[f_{c}(c)\right]$. this implies that g_{*} equals f_{*} on the homology class of C.

