

THEOREM If two maps $f_{,g}: X \to Y$ are homotopic, then they induce the same homomorphism $f_{*} = g_{*}: H_{n}(x) \to H_{n}(Y)$

In poutialar, if f is a homotopy equivalence, then f_{x} is an isomorphism for all n.

Proof the essential ingredient of the proof is to subdivide D'XI into simplices.

For a general n: Let $\Delta^n \times \{0\} = [v_0, \dots, v_n]$ and $\Delta' \times \Sigma M = [w_0, \dots, w_n]$, wi have the where vi and same image under the projection $\Delta^n \times \underline{T} \longrightarrow \Delta^n$. We pass from Eb, ..., Vn] to [Wo, ..., Wn] by interpolating a seguence of n-simplices each obtained from the preceding one by moving one vertex Vi up to Wi, starting with Vn and working backwards to Vo,

First step: [Vo,..., Vn] ->[Vo,..., Vn-1, Wn] Second step: [10, 1, 10, 1) -> [10, ..., Wn] -> [10, ..., Wn] [16, , Vi, With, -, Wh] -> [16, yith Wir wh] The region between these two simplifies is exactly the (n+1)-sx [Voj. , Vi, , Wi, , ..., Wn] which those [16, , Vi, With, , Wil as a lower face and [vor yin wind as an upper

face. N=1 W_0 W_1 Vo

 $\begin{bmatrix} v_0, v_1 \end{pmatrix} \rightarrow \\ \begin{bmatrix} v_0, v_1 \end{bmatrix} \rightarrow \\ \begin{bmatrix} v_0, w_1 \end{bmatrix} \rightarrow \\ \begin{bmatrix} v_0, w_1 \end{bmatrix} \rightarrow \\ \end{bmatrix}$ Sequence of 1-Simplices $[w_{0},w_{1}]$

Regions in between that are 2-simplies: [w,v,w,), [Vo,w,w,]

 $\left[V_{0}, V_{1}, V_{2}\right] \rightarrow$ $[v_0, v_1, w_2] \rightarrow$ LVO, WI, WZJ -> $\left[\mathcal{W}_{\varphi}, \mathcal{W}_{\Lambda}, \mathcal{W}_{Z} \right]$

Altogether, D'XI is the union of the (n+i)-simplices [Vo,..,Vi,Wi,-,Wn], each intersecting the next in an m-simplex face. Given a homotopy F: XXI ->Y tion of to g we define $P_{n}: S_{n}(x) \rightarrow S_{n+1}(Y),$ a homomorphism of groups given on generators by the following tormula $P(g) = \sum_{i=0}^{N} (-1)^{i} F_{0}(\beta \times id_{I}) \Big[w_{j,1}, w_{j,1}, w_{j} \Big]$ these are singular (nor)-simplices

this operator is called the PRISM OPERATOR. We will show that prism operators satisfy the basic relation $\partial P = g_c - f_c - P \partial K$ top bottom geometrically ∂P the represents the prism boundary of the prism prove this relation we calculate 0 $\partial P(\mathcal{C}) = \sum_{i \in \mathcal{L}} (-1)^{i} (-1)^{i} F \circ (\mathcal{C} \times id_{\mathcal{I}}) \Big[v_{0, -i} v_{1, 0}^{i} v_{0, -i} v_{1, 0}^{i} v_{0, -i} v_{1, 0}^{i} v_{0, -i} v_{0, 0}^{i} v_{0, -i} v_{0, 0}^{i} v_{0, -i} v_{0, 0}^{i} v_{0, -i} v_{0, 0}^{i} v_{0}^{i} v_{0}^{i} v_{0}^{i} v_{0, 0}^{i} v_{0}^{i} v_{$ $+ \sum_{j \ge i} (-1)^{i} (-1)^{j+1} F_{o} (3xid_{I}) \Big[V_{0,\cdot}, V_{i}, W_{i,\cdot}, \hat{W}_{i,\cdot}, \hat{W}_{i,\cdot},$

The terms with i=g in the
two sums cancel except for
$$F \circ (\partial x i d_{I}) | E \partial_{\partial_{1}} w_{\partial_{1}} \dots w_{\partial_{n}} | whichis $g \circ \partial_{1} = g_{c}(\partial_{1}) and - F \circ (\partial_{1} x i d_{I}) | L_{\partial_{1}, i} w_{\partial_{1}} | u_{\partial_{1}} | u_{\partial_{1}}$$$

$$P\partial(\mathcal{E}) = \sum_{\substack{i < j}} (-1)^{i} (-1)^{j} F_{o}(2 \times i d_{I}) \Big|_{[V_{0}, \cdot, V_{1}, \mathcal{W}_{1}, \widehat{\mathcal{W}}_{2}, \mathcal{W}_{3}]} + \sum_{\substack{i < j}} (-1)^{i} (-1)^{j} F_{o}(2 \times i d_{I}) \Big|_{[V_{0}, \cdot, \widetilde{V}_{3}), \widetilde{V}_{10}, \widetilde{\mathcal{W}}_{3}]}$$

Now we finish the proof of the theorem. If $C \in S_n(x)$ is a cycle, then $g_c(c) - f_c(c) = \partial P(c) + P \partial (c)$ $= \partial P(c)$

Since $\partial C = D$. Huis means that $g_{c}(c) - f_{c}(c)$ is a boundary and So $[g_{c}(c)] = [f_{c}(c)]$. This implies that g_{x} equals f_{x} on the homology class of C.

