Quick Intro to Homological Algebra Let us first recall the definition of a chain complex & homology of a general chain complex. Definition A CHAIN COMPLEX is a septience of abelian groups Ci, ic Z, together with a sequence of homomorphisms $\partial_i : C_i \to C_{i1}$ s.t. $\partial_i \circ \partial_i = 0 \quad \forall i$ (sometimes written as 202=0). Is called the BOUNDARY OPERATOR. $\rightarrow C_{ij} \xrightarrow{\circ} C_i \xrightarrow{\circ} C_{ij} \xrightarrow{\circ} C_{i-2} \xrightarrow{\circ} C_{i-2} \xrightarrow{\circ} C_{i-2} \xrightarrow{\circ} C_{i-2} \xrightarrow{\circ} C_{i-2} \xrightarrow{\circ} C_{i-1} \xrightarrow{\circ} C_{i-2} \xrightarrow{\circ} C_{i-1} \xrightarrow{\circ} C_{i-1$

Bi= Im (Ci+i=Ci) = boundaries Since 202=0, we have BicZi. Define Hi (C.):= Zi/Binondages in degree i $\mathcal{C}_{\bullet} = (\mathcal{C}_{\bullet}, \partial_{\bullet})$ Definition Emorphism of chain complexes? IF A = (A. , 2^A), B = (B. , 2^B) are chain complexes, a CHAIN MAP $f: \mathcal{A} \to \mathcal{B}$ is a collection of homomorphisms $f:A_{i} \rightarrow B_{i} \forall i \quad s.t. fo \partial^{A} = \partial^{B} \circ f$ $\begin{array}{cccc} A_{i+1} & \xrightarrow{\partial_A} A_i & \xrightarrow{\partial_A} A_{i-1} & \xrightarrow{\partial_A} & & \\ & & \downarrow_f & \bigcirc & \downarrow_f & \bigcirc & \downarrow_f & & \\ & & \downarrow_f & \bigcirc & \downarrow_f & \bigcirc & \downarrow_f & & \\ & & & & & \\ \end{array}$ all $= B_{i+1} \xrightarrow{\partial B} B_i \xrightarrow{\partial B} B_{i-1} \xrightarrow{\rightarrow}$ X A commutative

PROPOSITION

Let f: A. > B. be a chain map. then f induces a homomorphism $f_*: H_{\mathcal{C}}^{\cdot}(\mathcal{A}_{\bullet}) \to H_{\mathcal{L}}^{\cdot}(\mathcal{B}_{\bullet})$ for all it Z by the following procedure: Let de Hi (A.). Pick a cycle acti s.t. [a]=a. Define $f_{\star}(a) = [f(a)].$ Moreover, If A., B. and C. are chain complexes and $f: A_{\cdot} \rightarrow B_{\cdot}, g: B_{\cdot} \rightarrow C_{\cdot}$ are chain maps, then gof is also a and $(g \circ f)_{\star} = g_{\star} \circ f_{\star}$ and chain map $(id_{\mathcal{A}})_{*} = id_{H_{i}(\mathcal{A})}$ for all i.

Key ingredient: Chain maps map boundaries to boundaries and cycles to cycles. EXACT SEQUENCES Let A,B,C be abelian groups, and A -> B -> C be two homomorphisms. the sequence A is B 3, C is called EXACT If Kerj=Imr. A seguence ~ > A K+1 A SK AK-1 ... is called EXACT if A the Ak Ak is EXACT for all k. Kemark (1) $0 \rightarrow A \xrightarrow{f} B$ is exact \Leftrightarrow f is injective (kerf={0})

 $\widehat{\mathcal{A}} \land \widehat{\mathcal{A}} \xrightarrow{\mathcal{F}} \widehat{\mathcal{B}} \rightarrow 0$ is exact
<7 g is surjective (Img = ken0 = B) $0 \rightarrow A^{h}B \rightarrow 0$ is exact (2) 3 h is an isomorphism. FIF D-A-B-C-D is exact, the embedding i: A -> B and the surjection j induce an isomorphism $J_{i(A)} \xrightarrow{\sim} C$ (this holds since j induces an B/ -> Imj) Keij II I SO MORPHU SM $B_{\lambda}^{(A)}$ C

An exact septence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow D$ is called a SHORT EXACT SEQUENCE (SES) Let A. B., C. be chain complexes. $i: A_{\bullet} \rightarrow B_{\bullet}, j, B_{\bullet} \rightarrow C_{\bullet}$ be chain Let maps. We can look at the sequence $0 \rightarrow \mathcal{A} \xrightarrow{i} \mathcal{B} \xrightarrow{i} \mathcal{E} \xrightarrow{} \mathcal{O} \quad (\times)$ We say that this sepuence is exact $r \neq neZ \quad 0 \rightarrow A_n \xrightarrow{t} B_n \xrightarrow{s} C_n \rightarrow 0$ 15 Exact. We call (*) a SES of chain complexes.

THEOREM Let $D \rightarrow A \xrightarrow{L} B \xrightarrow{J} C \rightarrow D$ be a SES of chain complexes. Then It induces a LONG EXACT SEGUENCE IN HONOLOGY $G_{H_{n+1}}(A) \xrightarrow{i_*} H_n(B) \xrightarrow{j_*} H_{n+1}(V)$ $G_{H_n}(A) \xrightarrow{i_*} H_n(B) \xrightarrow{j_*} H_n(C) \xrightarrow{j_*}$ $\mathcal{G}_{H_{n}}(\mathcal{A}) \xrightarrow{i_{*}} \mathcal{H}_{n}(\mathcal{B}) \xrightarrow{j_{*}} \mathcal{H}_{n}(\mathcal{C}) \xrightarrow{\partial_{*}}$

The homomorphism $\partial_* : H_n(\mathcal{C}) \to H_n(\mathcal{C})$ to called the CONNECTING HOMOMORPHISM. Proof

Let's examine what happens on the chain level in degrees p and p-1:

- We will define $\partial_{x} : H_{p}(C) \rightarrow H_{p_{1}}(CA.)$ as follows.
- Let $m \in H_p(\mathcal{C})$. Choose a Cycle CeGp

(ie.
$$\partial c = 0$$
) s.t. $[c] = m$.
 $B_{p} \xrightarrow{i} C_{p}$ is a surjection, so
 $\exists b \in B_{p}$ s.t. $f(b) = c$.

Since $j\partial(b) = \partial(j(b)) = \partial c = D$, ∂(b) ∈ korj = Imí. $\Rightarrow \exists a \in A_{p-1} \text{ s.t. } i(a) = \partial b.$ Note that r(9a) - 9r(a) - 9(9P) = 0But i is injective hence 2a=0, ie a is a cycle. Define $\partial_*(\gamma) = [\omega]$.

CLAIM: the definition of ∂_{\star} is good, i.e. it doesn't depend on the choice of c (with [cJ=m]) hor on the choice of b.