Quick Intro to Homological Algebra Let us first recall the definition of a chain complex \& homology of a general chain complex.
Definition
A CHAIN COMPLEX is a sequence of abelian groups $C_{i}, i \in \mathbb{Z}$, together with a sequence of homomorphisms $\partial_{i}: C_{i} \rightarrow C_{i-1}$ st. $\partial_{i-1} \circ \partial_{i}=0 \quad \forall i$ (sometimes written as $\partial \circ \partial=0$). ∂ is called the BOUNDARY OPERATOR

$$
\rightarrow C_{i+1} \xrightarrow{\partial} C_{i} \xrightarrow{\partial} C_{i-1} \rightarrow C_{i-2} \stackrel{\partial}{\rightarrow} \cdots
$$

Let $Z_{i}=\operatorname{ker}\left(C_{i} \xrightarrow{\partial} C_{i-1}\right)^{c^{c y c l e s}}$ and

$$
B_{i}=\operatorname{lm}\left(C_{i+1} \rightarrow C_{i}\right) \quad \text { boundaries }
$$

Since $\partial_{0} \partial=0$, we have $B_{i} C Z_{i}$,
Define $H_{i}\left(\zeta_{0}\right):=Z_{i} / B_{i}$

$$
T_{\text {in degree i }}^{\text {nome }} \quad \varepsilon_{0}=\left(C_{0}, \partial_{0}\right)
$$

Definition [morphism of chain complexes] If $A_{0}=\left(A_{0}, \partial_{0}^{A}\right), B_{0}\left(B_{0}, \partial_{0}^{B}\right)$ are chain complexes, a CHAIN MAP $f=O t . \rightarrow B$. is a collection of homomorphisms $f: A_{i} \rightarrow B_{i} \forall i \quad$ s.t. $f \circ \partial^{A}=\partial^{B} \circ f$ $\begin{array}{ll}A_{i+1} \xrightarrow[A]{\partial} A_{i} \xrightarrow{\partial} A_{i-1} \rightarrow \cdots & \text { all } \\ \text { squares } \\ \text { if } C \text { if } C f & \text { are } \\ B_{i+1} \xrightarrow{\partial B_{2}} B_{i} \xrightarrow{\partial g} B_{i-1} \rightarrow \cdots & \text { commutative }\end{array}$

PROPOSITION
Let $f: A \rightarrow B$. be a chain map Then f induces a homomorphism

$$
f_{*}: H_{i}\left(A_{0}\right) \rightarrow H_{i}\left(B_{0}\right)
$$

for all $i \in \mathbb{Z}$ by the following procedure.
Let $\alpha \in H_{i}(c A$.$) . Pick a cycle$
$a \in A_{i}$ s.t. $[a]=\alpha$. Define

$$
f_{*}(\alpha)=[f(a)] .
$$

Moreover, if A., B. and \mathcal{E}, are chain complexes and $f: A A_{0} \rightarrow B_{0}, g: B_{0} \rightarrow C$. are chain maps, then oof is also a chain map and $(g \circ f)_{*}=g_{*} \circ f_{*}$ and $\left(i \alpha_{A_{0}}\right)_{*}=i d_{H_{i}\left(\rho_{0}\right)}$ for all i.

Key ingredient: Chain maps map boundaries to boundaries and cycles to cycles.

EXACT SEQUENCES
Let A, B, C be abelian groups, and
$A \xrightarrow{i} B \xrightarrow{j} C$ be two homomorphisms
The sequence $A \xrightarrow{i} B \xrightarrow{j} C$ is called
EXACT if ker $j=1 \mathrm{mi}$
A sequence $\rightarrow A_{k+1} \xrightarrow{f_{k+1}} A_{k} \xrightarrow{f_{k}} A_{k-1} \xrightarrow{f_{k-1}}$ is called EXACT if $A_{k+1}^{\stackrel{f(r)}{\longrightarrow}} A_{k} \stackrel{f}{\leftrightarrows} A_{k-1}$ is EXACT for all K.

Remark
(1) $0 \rightarrow A \xrightarrow{f} B$ is exact \Leftrightarrow f is infective ($\operatorname{ken} f=\{0\}$)
(2) $A \xrightarrow{g} B \rightarrow 0$ is exact \Leftrightarrow

$$
\begin{aligned}
g \text { is } \operatorname{surfective~}(\operatorname{limg} & =\operatorname{ker} 0 \\
& =B)
\end{aligned}
$$

(3) $0 \rightarrow A \stackrel{h}{\rightarrow} B \rightarrow 0$ is exact \Leftrightarrow h is an isomorphism.
(4) If $0 \rightarrow A \stackrel{i}{\rightarrow} B \xrightarrow{j} C \rightarrow 0$ is
exact, the embedding $i: A \hookrightarrow B$ and the surjection of induce an isomorphism $B / i(A) \stackrel{\cong}{\cong} C$ (this holds since j induces an $B / k e j \rightarrow \lim _{11}$
$B / i(A)$

An exact sequence $O \rightarrow A \rightarrow B \rightarrow C \rightarrow D$ is called a SHORT EXACT SEQUENCE (LES)
Let At., Bo, \mathcal{C}_{0} be chain complexes Let $i, A_{0} \rightarrow B_{0}, j, B_{0} \rightarrow \mathcal{E}_{0}$ be chain maps. We can look at the sequence

$$
0 \rightarrow \mathrm{cl}_{\mathrm{L}} \stackrel{i}{\rightarrow} \mathrm{~B}_{0} \xrightarrow{\delta} e_{0} \rightarrow 0 \quad(*)
$$

We say that this sequence is exact If $\forall n \in \mathbb{Z} \quad 0 \rightarrow A_{n} \xrightarrow{i} B_{n} \xrightarrow{\gamma} C_{n} \rightarrow 0$ is exact.
We call $(*)$ a SES of chain complexes.

THEOREM
Let $O \rightarrow A, \stackrel{i}{\rightarrow} B_{0} \xrightarrow{\gamma_{0}} \varphi_{0} \rightarrow 0$
be a SES of chain complexes. Then It induces a LONG EXACT SEQUENCE IN HOMOLOGY

$$
\begin{aligned}
& \left.\zeta_{H_{n+1}}\left(\mathcal{A}_{0}\right) \xrightarrow{i_{*}} H_{n+1}(B .)^{j_{*}} H_{n+1}\left(\varphi_{0}\right)\right)^{\partial_{*}} \\
& \rightarrow H_{n}\left(\mathcal{A} A_{0}^{\dot{i}_{*}} H_{n}(B .)^{j_{*}} H_{n}\left(\varphi_{0}\right)^{\partial_{*}}\right. \\
& \rightarrow H_{n-1}\left(A_{0}\right)^{i_{*}} H_{n-1}\left(B_{1}\right) \xrightarrow{j *} H_{n-1}\left(\zeta_{0}\right){ }_{D}^{\partial *}
\end{aligned}
$$

The homomorphism $\partial_{*} \cdot H_{n}\left(\varphi_{0}\right) \rightarrow H_{n-1}\left(C A_{0}\right)$ is called the CONNECTING HOMOMORPHISM.

Proof
Let's examine what happens on the chain level in degrees p and $p-1$:

$$
\begin{aligned}
& 0 \rightarrow A_{p} \stackrel{i}{\rightarrow} \stackrel{B_{p}}{B_{p}}{ }^{j} C_{p} \rightarrow 0
\end{aligned}
$$

We will define $\partial_{*}: H_{p}\left(\zeta_{0}\right) \rightarrow H_{p, 1}\left(\alpha t_{0}\right)$ as follows.
Let $\quad n \in H_{p}\left(\varphi_{0}\right)$. Choose a cycle $C \in C_{p}$
(ie. $\partial c=0$) sit. $[c]=\gamma^{n}$.
$B_{p} \xrightarrow{j} C_{p}$ is a surjection, so $\exists b \in B_{p}$ st. $f(b)=c$.

Since $\quad j \partial(b)=\partial(j(b))=\partial c=0$,

$$
\begin{aligned}
& \partial(b) \in k e r j=\operatorname{Im} i \\
\Rightarrow \exists! & a \in A_{p-1} \text { s.t. } i(a)=\partial b
\end{aligned}
$$

Note that

$$
i(\partial a)=\partial i(a)=\partial(\partial b)=0
$$

But i is infective, hence $\partial a=0$, ie. a is a cycle.

Define $\partial_{*}\left(\gamma^{r}\right):[a]$.
CLAIM: the definition of ∂_{*} is good, ie. it doesn't depend on the choice of c (with $[c]=m)$ nor on the choice of b.

