We need two more definitions from homological algebra in order to define relative homology groups.

Definition Let $J=(D_{0,2}^{D})$ be a chain complex. A chain complex E-1 Co, 2°?) is a CHAIN SUBCOMPLEX 7 CpCDp Xp and A 2^c= 2^p/_C. Definition If CCD is a subcomplex, then we can define the QUOTIENT COMPLEX D/q. maps induced on guokents 202 = O since the boundary maps are

induced by the boundary maps of D.

RELATIVE HOMOLOGY

Let X be a space and ACX a subspace. We denote by $S_{\bullet}(A)$, $S_{\bullet}(X)$ the chain complexes of ningular chains in A, and in X. $S_{\bullet}(A) \subset S_{\bullet}(X)$ is a subcomplex. Denote by $i: S_{\bullet}(A) \rightarrow S_{\bullet}(X)$ the inclusion. This is a chain map.

Let $S_{\bullet}(x, A) := S_{\bullet}(x)$ $S_{\bullet}(A)$ $S_{p}(x,A) = S_{p}(x)$ group of $S_{p}(A)$ prohains where So, So(X,A) is $\frac{\partial \mathcal{S}_{A}(X)}{\partial \mathcal{S}_{P}(X)} \xrightarrow{\partial} \mathcal{S}_{P-1}(X) \xrightarrow{\partial} \mathcal{S}_{P-2}(X)$

The homology groups of this chain complex
are called RELATIVE HOMOLOGY GROUPS.
Intuition:
The elements of
$$H_p(X, A)$$
 are represented
by RELATIVE CICLES,
p-chains $C \in S_p(X)$ such that $\partial_C \in S_{p1}(A)$.
A relative cycle c is trivial in
 $H_p(X, A)$ iff it is a RELATIVE BOUNDARY
i.e. if $C = \partial b + a$ for some $b \in S_{p+1}(X)$
and $a \in S_p(A)$.
There properties make precise the intuitive
idea that $H_r(X, A)$ is homology

of X modulo A.

We have the following SES of chain complexes: $\mathbb{O} \to \mathcal{S}_{\bullet}(A) \xrightarrow{\mathcal{N}} \mathcal{S}_{\bullet}(X) \xrightarrow{\mathcal{N}} \mathcal{S}_{\bullet}(X) \xrightarrow{\mathcal{N}} \mathbb{O}_{\bullet}(X) \xrightarrow{\mathcal{N$ this SES of chain complexes induces a LES in homology $- \xrightarrow{\partial_{X}} H_{p}(A) \xrightarrow{\wedge_{X}} H_{p}(X) \xrightarrow{\gamma_{X}} H_{p}(X) \xrightarrow{\gamma_{X}}$ The connecting homomorphisma has a simple description. $\partial_{\mathbf{x}} : \mathcal{H}_{\mathbf{p}}(\mathbf{X}, \mathbf{A}) \longrightarrow \mathcal{H}_{\mathbf{p}-\mathbf{I}}(\mathbf{A})$ $0 \rightarrow S_{p}(A) \xrightarrow{i} S_{p}(x) \xrightarrow{i} S_{p}(xA) \rightarrow 0$ $\begin{array}{cccc} \delta & & & & & & \\ \delta & & & & \\ \delta & & & \\ 0 \rightarrow & S_{pl}(A) \xrightarrow{i} & S_{pl}(X) \xrightarrow{i} & S_{pl}(X) \xrightarrow{i} & S_{pl}(X) \xrightarrow{i} & \\ S_{pl}(X) \xrightarrow{i} & S_{pl}(X) \xrightarrow{i} & S_{pl}(X) \xrightarrow{i} & \\ S_{pl}($ $e \longrightarrow \partial \overline{c} \geq \partial \overline{c} \in S_{p-1}(A)$, so we can take $e \partial \overline{c}$

$$\partial_{x} [c] = [e] =$$

= $[ac]$
+ $h_{c} c [aso of]$
 $\partial_{c} m A$

Exactness implies that $Tf_H_p(X,A)=0$ for all p, then the inclusion $A \rightarrow X$ inducés isomorphisms $H_p(x) \approx H_p(A) \forall P$. So we can think of Hp(x,A) as measuring the difference between the groups Hp (x) and Hp (A). There is an analogous LES of reduced homology groups for a pair (X,A) with $A \neq \phi$. This comer from applying the LES

theorem to $0 \rightarrow S(A) \rightarrow S(X) \rightarrow S(X,A) \rightarrow D$ In non-negative dimensions, augmented by the SES $0 \rightarrow \mathbb{Z} \xrightarrow{id} \mathbb{Z} \rightarrow 0 \rightarrow 0$. in dimension -1. here we? augment by 0, not Z! Example Z LES for (X,Xo), where X & Yieldo $\begin{array}{l} & & & \\ & &$ $\tilde{S} = H_p(x, x_0) \cong \tilde{H}_p(x)$ for all p. Soon, we will prove the following theorem: THEOREM [Hatcher] If X is a space and A is a non-empty closed subspace that is a strong deformation retract of some heighborhood

in X, there is an exact sequence $\rightarrow H_p(A) \stackrel{\checkmark}{\rightarrow} H_p(x) \stackrel{\diamond}{\rightarrow} H_p(x) \stackrel{\diamond}{\rightarrow} H_p(x) \stackrel{\diamond}{\rightarrow}$ $\rightarrow H_{p_1}(A) \xrightarrow{i_*} H_{p_{-1}}(X) \xrightarrow{j_*} H_{p_1}(X) \xrightarrow{j_*} H_{p_1}(X) \xrightarrow{j_*} H_{p_1}(X)$ where i is the inclusion $A \rightarrow X$ and j is the guotient map $X \rightarrow X_A$. EXAMPLE $\widetilde{H}_{p}(S^{n}) \cong \mathbb{Z}$ and $\widetilde{H}_{p}(S^{n}) = 0$ for $i \neq n$, For n>0 let $(x,A) = (D^n, S^{n-1})$. $\sum_{S^{\circ}} \mathcal{I}$ N = 1 $\int S^1 D^2 / S^1$ N=2

For a general n,
$$D_{S^{n-1}}^{n} \approx S^{n}$$
.
the LES for homology for (D^{n}, S^{n-1})
 $\stackrel{i}{\rightarrow} \stackrel{i}{H_{p}}(S^{n-1}) \rightarrow \stackrel{i}{H_{p}}(D^{n}) \rightarrow \stackrel{i}{H_{p}}(S^{n}) \stackrel{i}{\Rightarrow} \stackrel{i}{H_{p+1}}(S^{n-1})$
 $\rightarrow \stackrel{i}{H_{p-1}}(S^{n}) \rightarrow \stackrel{i}{H_{p-1}}(S^{n-1}) \rightarrow \stackrel{i}{H_{p-1}}(S$

that
$$H_{\mu}(x) \stackrel{\sim}{=} \bigoplus H_{\mu}(x_{d})$$
, where
 $d \in A$
 X_{x} for $d \in A$ are the path-connected
Components of X. So
 $H_{\mu}(s^{\circ}) = H_{\mu}(\bullet, \bullet) \stackrel{\sim}{=} H_{\mu}(\bullet) \oplus H_{\mu}(\bullet)$
 $\Rightarrow H_{\mu}(s^{\circ}) = \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & \mu = 0 \\ 0 & \text{otherwise} \end{cases}$
 $\Rightarrow H_{\mu}(s^{\circ}) = \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & \mu = 0 \\ 0 & \text{otherwise} \end{cases}$
Now we use \circledast to get $H_{\mu}(s^{\circ}) \stackrel{\sim}{=} H_{\mu-1}(s^{\circ})$
for $p > 1$ (from before we know that $H_{\nu}(s^{\circ}) = 0$).
 $H_{\mu}(s^{\circ}) = \begin{cases} \mathbb{Z} & \mu = 0 \\ 0 & \text{otherwise} \end{cases}$
By induction it follows that $H_{\mu}(s) = \begin{cases} \mathbb{Z} & \mu = 1 \\ 0 & \text{otherwise} \end{cases}$