If we have a map $f:(X,A) \rightarrow (Y,B)$, then we also have an induced map $f_{c}: S_{a}(x, A) \rightarrow S_{b}(Y, B)$ $\xi f_{\star} H_{p}(x,A) \rightarrow H_{p}(\underline{1}B)$ Ab⁻ (Since fc takes S. (A) to S.(B) the map on guotients is well defined. Also, $f_c \partial = \partial f_c$ holds for relative chains since it holds for absolute chaims). We have the following statement about homotopy invariance

PROPOSITION If two maps $f_{ig}: (x, A) \rightarrow l' f_{ig}$ are homotopic through maps of pairs $(x,A) \rightarrow (\Upsilon,B)$, then $f_{\star} = A_{\star} : H_n(xA) \rightarrow H_n(YB).$ Proof Hatcher on Exercise (proof in page 118).

Finally, consider BCACX. We have a SES of chain complexes $O \rightarrow S_{\bullet}(A,B) \rightarrow S_{\bullet}(X,B) \rightarrow S_{\bullet}(X,A) \rightarrow O$.

This sequence induces a LES

 $-H_n(A,B) \rightarrow H_n(X,B) \rightarrow H_n(X,A)$ $\rightarrow \mathcal{H}_{\mathcal{N}-\mathcal{N}}(A_{\mathcal{B}}) \rightarrow \cdots$

SPLIT EXACT SEQUENCES het O-> A is B is C-> D be a SES of abelian groups. Definition the sequence is called SPLIT if J on isomorphism $T: B \xrightarrow{\cong} A \oplus C \quad s.t.$ the following diagram commutes $0 \rightarrow A \xrightarrow{\lambda} B \xrightarrow{\delta} (\rightarrow))$ lid the lid $0 \rightarrow A \xrightarrow{\rightarrow} A \oplus C \xrightarrow{\rightarrow} C \rightarrow 0$ where $i_A(a) := (a, o)$ and $\pi_c(a, c) := c$.

Proposition
To say that the SES
$$0 \rightarrow A \xrightarrow{i} B \xrightarrow{i} C \rightarrow 0$$

is replit is equivalent to any of
the following three statements
(1) $\exists a$ homomorphism $C:B \rightarrow B$
with $c = c$, s.t kerc = imi.
(2) $\exists a$ homomorphism $C \xrightarrow{i} B$
s.t. jo $b = 1d_{C}$ $0 \rightarrow A \rightarrow B \xrightarrow{i} C \rightarrow 0$
(s is a right inverse to j)
(3) $\exists a$ left inverse to i, ic.
a homomorphism $u: B \rightarrow A$ with $u = id_{A}$
 $0 \rightarrow A \xrightarrow{i} B \rightarrow C \rightarrow 0$
 iu

Proof
split
$$\Rightarrow D$$
: $0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0$
Jid It Jid
 $0 \rightarrow A \xrightarrow{j} A \xrightarrow{j} C \rightarrow 0$
 $A \xrightarrow{j} A \xrightarrow{j} C \xrightarrow{j} C \rightarrow 0$
 $A \xrightarrow{j} A \xrightarrow{j} C \xrightarrow{j} C \xrightarrow{j} 0$

Exercise: check that eve=e and kere=imi.

$$(D=)$$
 split
Note that $b-e(b) \in In i$:
 $e(b-e(b)) = e(b)-e \circ e(b) =$
 $= e(b) - e(b) = 0$
 $\implies b - e(b) \in kare = In(i).$
Define $t(b) := (a, j(b))$, where $a \in A$
is the unique element with

ila-b-eb).

Exercise: Check that I is a homomorphism and that it makes the diagram in

4

the definition commutative (2) = (1) Put $e(b) := s \circ j(b)$. Split = (2) Put $s(c) := t^{-1} \circ i_c(c)$. (3) $\neq 71/split$ Exercise

Example $0 \rightarrow \mathbb{Z} \xrightarrow{x_2} \mathbb{Z} \xrightarrow{y} \mathbb{Z}/_{2\mathbb{Z}} \xrightarrow{y} 0$

is a non-split SES, because Z is not isomorphic to $Z \oplus Z_{2Z}^{*}$ (Alternatively, $Z = Z_{2ZZ}^{*}$ right inverse to j because s must be 0.)

PROPOSMON

Let DAABBBC 20 be a SES of abelian groups. If C is a free abelian, then the sequence splits.

Proof Let ECaldet be a basis for C.

Define C:C->B as follows: $\forall x \in T$ pick $b_x \in j^{-1}(C_x) \subset B$. not empty since j is surjecture Define $S(C_{d}) := b_{d}$. Now extend linearly to s: C->B. Clearly, jos=ide E

Let A, B, C be chain complexes, and $0 \rightarrow A, \stackrel{i}{\rightarrow} B, \stackrel{a}{\rightarrow} C, \rightarrow 0$ be a SES of Chain complexes. The sequence is called SPLIT (in the sense of chain complexes) if Fa CHAIN MAP $s: E \rightarrow B$ with $\tilde{J} \circ S = id_E$.

I a splitting T with T being a chain map Z7 J 4 left inverse of i with u = chain map. IF A. C. are chain complexes we can define A. € C., where $(A, \oplus C)_{\rho} = A_{\rho} \oplus C_{\rho}$ and the boundary operator is $\mathfrak{I} := \mathfrak{I}_{\mathfrak{P}} \oplus \mathfrak{I}_{\mathfrak{B}}$ Note that $H_p(A, \oplus E) \cong H_p(A,) \oplus H_p(E)$ because $Z_p(A, \oplus C) = Z_p(A) \oplus Z_p(C)$ $B_{p}(A, \Phi C) = B_{p}(A,) \Phi B_{p}(C).$ $0 \rightarrow A_{\bullet} \rightarrow B_{\bullet} \rightarrow C_{\bullet} \rightarrow 0$ is a split 17 SES of complexes, then

 $H_{p}(B_{\bullet})\cong H_{p}(A_{\bullet})\oplus H_{p}(C_{\bullet})$ $\forall p$.

Remark Sometimes O > Ap > Bp > Cp > O splits for all p as a septence of abelian groups, but Not as a sepuence of chain complexes. Example X = space, A = subspace $0 \rightarrow S_{\bullet}(A) \xrightarrow{i} S_{\bullet}(X) \xrightarrow{i} S_{\bullet}(X, A) \rightarrow 0$ Claim: 4p, Sp(XA) is free abelian. A basis for this group: consider $\mathcal{F} \mathcal{F} \rightarrow X : \mathcal{F} (\mathcal{A}) \mathcal{F} \mathcal{F} = \mathcal{F}$ and fjld) j_{eeg}. this family freely generates Sp(X,A).

So, Yp, the sequence $0 \to S_{\rho}(A) \to S_{\rho}(X) \to S_{\rho}(X,A) \to O$ splits as a sequence of abelian groups, but usually NOT as chair complexer since usually this replitting is not a chain map. Usually Hp(x) 7 Hp(A) + Hp(X,A), EXAMPLE Brouwer fixed point theorem Every continuous map h: D^ DN has a fixed point, that is, a point $x \in D^{n}$ with h(x) = xSuppose that $h(x) \neq X \quad \forall x \in D^n$ (proof by contradiction).

then we can define $r: D^n \rightarrow S^{n-1}$ by letting r(x) be the point of S^{n-1} where the ray in \mathbb{R}^n starting at h(x) and passing through X leaves D^h . This map is continuous r(x) $\begin{pmatrix} x & R^{(n)} \\ x & R^{(n)} \end{pmatrix} \otimes r(x) = x \in S^{n-1}, \text{ or}$ with other words,

a retraction.

For $A = S^{n-1}$, $X = D^n$ such an $M: X \to A$ gives a splitting $H_p(D^n) \cong H_p(S^{n-1}) \oplus H_p(D^n, S^{n-1})$. However, for p=n-1 $H_{n-1}(D^n) = 0$, whereas $H_{n-1}(S^{n-1}) \cong Z^2$, which is not