ExCISION
A fundamental prpeetry of relative homology groups is given by the following EXCISION THEOREM, describing when the relative groups $H_{n}(x, A)$ are unaffected by excising/deleting a subset $Z \subset A$.
THEOREM (EXCISION)
Given subspaces $Z \subset A C X$ such that the closure of Z is contained in the interior of A, then the inclusion $(x-z, A-z) \hookrightarrow(x, A)$ unduces isomorphisms $H_{p}(x-z, A-z) \rightarrow H_{p}(x, A)$ for all p Equivalently, for subspaces $A, B C X$ whose interior covers X, the inclusion $(B, A \cap B) \rightarrow(X, A)$ induces isomorphisms
$H_{p}(B, A \cap B) \rightarrow H_{p}(X, A)$ for all p.
The translation between the two versions is obtained
 by setting

$$
B=x-z \& Z=x-B
$$

Then $A \cap B=A-Z$ and the condition $\bar{Z} \subset \AA$ is equivalent to

$$
X=\AA \cup \dot{B} \text { since } X-\bar{B}=\bar{Z}
$$

The proof is quite technical and will be dome in several stops.
REHANG HOMOLOGY GROUPS OF A COVERING TO HOMOLOGY GROUPS OF A SPACE
Let x be a space and $U=\left\{u_{\alpha}\right\}_{\alpha \in A}$ be a collection of subsets of x st.
the interiors of the $u_{\alpha}^{\prime} s$ coven X, $x=\bigcup_{\alpha \in \infty} i_{\alpha}$.
We say that a subset $Q \subset X$ is U-small if $\exists \alpha \in A$ st. $Q \subset U_{\alpha}$. Consider the subgroup of $S_{p}(x)$ generates by $S_{p}\left(U_{\alpha}\right) \forall \alpha$. Denote it by $s_{p}^{u}(x)$. The elements are chains $\sum_{i} n_{i} b_{i}$ such that each σ_{i} has image contained in some set in the cover U. The boundary map $a: S_{p}(x) \rightarrow S_{p-1}(x)$ takes $s_{p}^{u}(x)$ to $s_{p-1}^{u}(x)$, so the groups $S_{p}^{u}(x)$ form a chain complex. We denote this chain complex $S_{0}^{n}(x)$ and it is a subcomplex of $S_{0}(x)$.

We denote the homology groups of $S_{0}^{u}(x)$ by $H_{p}^{u}(x)$.
THEOREM 1
the inclusion chain map $i^{u}: s_{0}^{u}(x) \rightarrow S_{0}(x)$ induces an isomorpheorn in homology

$$
i_{*}^{u}: H_{p}^{u}(x) \stackrel{\cong}{\rightrightarrows} H_{p}(x) \quad \forall p \text {. }
$$

To prove theorem 1 , we will apply the so-called barycentric subdivision process.
BARYCENTRIC SUBDIVISION
(1) BARYCENTRIC SUBDIVISION

OF SIMPLICES
Let $G=\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ be an n-simplex in \mathbb{R}^{d}. Then

$$
b=\left\{\sum_{i=0}^{n} t_{i} v_{i} \mid 0 \leq t_{i} \leq 1, \varepsilon_{t_{i}}=1\right\}
$$

The BARYCENTER or 'center of gravity' of the simplex 6 is the point

The BARYCENTRIC SUBDIVISION of $\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ is the decomposition of $\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ into m-simplices
$\left[b, w_{0}, \ldots, w_{n-1}\right]$ where, inductively, $\left[w_{0}, \ldots, w_{n-1}\right]$ is an $(m-1)$-simplex in the barycentric subdivision of a face $\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]$. the induction starts with $n=0$.

$$
n=0 \quad{\underset{\text { subdivision }}{\text { barycentric }}}_{\vec{\longrightarrow}} \text {. }
$$

$n \geq 2 \quad \xrightarrow{\text { barycentric }} n$-simplices $\zeta=\left[V_{0},-, V_{n}\right]$ subdivision $\tau=\left[b, w_{0}, \ldots, w_{n-1}\right]$ where $\left[\omega_{0}, \ldots, \omega_{n-1}\right]$ is a $(n-1)-5 x$ from the barycentric subdivision of a face $\left[v_{0}, \ldots, v_{1}, \ldots, v_{n}\right]$ of 6

CLAIM
$\operatorname{diam}\left[b, w_{0}, \ldots, \omega_{n-1}\right] \leqslant \frac{n}{n+1} \operatorname{diam}\left[v_{0}, \ldots, v_{n}\right]$
$\lambda_{\text {max }}$ distance
between any two of its vertices sin

$$
\left|v-\sum_{i} t_{i} v_{i}\right|=\mid \sum_{i} t_{i}\left(v-v_{i}\left|\leq \sum_{i} t_{i}\right| v-v_{i} \mid\right.
$$

$$
\leqslant \sum_{i} t_{i} \max _{j}\left|v-v_{j}\right|=\max _{\gamma}\left|v-v_{j}\right|
$$

To obtain the bound, we therefore need to verify that the distance between any two vertices ω_{j} and ω_{k} of a simplex τ of the barycentric subdivision of $\left[v_{0}, \cdots, v_{n}\right]$ is at most $\frac{n}{(n+1)} \operatorname{diam}\left[v_{0}, . ., v_{n}\right]$.

(1) $w_{j} \& w_{k} \neq b$, the bargenter of $\left[v_{0}, \ldots, v_{n}\right]$ in this case the statement follows by induction on n as these two points lie in a popper face of $\left[v_{0}, \ldots, v_{n}\right]$:

$$
h=1
$$

$$
\operatorname{diam}_{\eta}\left[v_{0}, b\right] \leqslant \frac{1}{2} \operatorname{diam}\left[v_{0}, v_{1}\right]
$$

$$
\begin{aligned}
& \ell^{I H} \\
\left|w_{i}-w_{j}\right| & \leq \frac{n-1}{n} \operatorname{diam}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right] \\
& \leq \frac{n}{n+1} \operatorname{diam}\left[v_{0}, \ldots, v_{n}\right] \\
\lambda \frac{n-1}{n} & \leq \frac{n}{n+1}
\end{aligned}
$$

(2) Suppose WLOG that $w_{j}=b$.
then
$\left|b-w_{k}\right| \leqq\left|b-v_{i}\right|$ for some i.
Let b_{i} be the barycenter of $\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]$

$$
b_{i}=\frac{1}{n} \sum_{j \neq i} V_{j}
$$

$$
b=\frac{1}{n+1} v_{i}+\frac{n}{n+1} b_{i}
$$

$$
\begin{aligned}
\left|b-V_{i}\right| & =\frac{n}{m+1}\left|b_{i}-V_{i}\right| \quad \begin{array}{l}
\text { iMPortant: } \\
\left(\frac{n}{n+1}\right)^{r} \underset{r \rightarrow \infty}{ } \\
\end{array} \quad \frac{n}{n+1} \operatorname{diam}\left[V_{0}, . V_{n}\right]
\end{aligned}
$$

(2) BARYCENTRIC SUBDIVISION

OF LINEAR CHAINS
Let $\mathcal{Y} \subset \mathbb{R}^{d}$ be a convex set.
we define
$L S_{p}(y)=\left\langle 6: \Delta^{p} \rightarrow Y\right| 6$ is a linear map \rangle
linear

$$
2\left(\sum_{i=0}^{k} t_{i} e_{i}\right)=\sum_{\substack{i=0 \\ \text { standard } \\ \text { basis }}} t_{i} \sigma\left(e_{i}\right)^{1}
$$

$L S_{p}(y) \subset S_{p}(y)$ \& the boundary map maps $L S_{p}(y)$ to $L S_{p_{-1}}(7)$.
Let $L S_{-1}(y)=\mathbb{Z}\langle[\emptyset\rangle \leftarrow$ empty simplex
and $\partial\left[\omega_{0}\right]=[\phi] \forall 0-s x \omega_{0}$.

We have the following chain complex,

$$
\begin{aligned}
\rightarrow+L S_{p}(y) \rightarrow L S_{p-1}(7) & \rightarrow S_{1}(y) \rightarrow L S_{0}(y) \rightarrow \\
& \rightarrow \mathbb{Z} \rightarrow \cdots
\end{aligned}
$$

a subcomplex of $S_{0}(\mathcal{Y})$ that we denote by $L S_{0}(7)$.
Each $b \in \mathcal{I}$ determines a homomorphism $b: L S_{p}(y) \rightarrow L S_{p+1}(y)$ defined by:

$$
b\left(\left[w_{0}, \ldots, w_{\varphi}\right]\right)=\left[b, w_{0}, \ldots, w_{p}\right]
$$

\& extended to all of $L S_{p}(7)$ linearly,

$$
\int \text { CONE OPERATOR }
$$

b sends a linear chain to the cone that has this chain as a base \& whose tip is b

Let's compute

$$
\begin{aligned}
& \partial\left(b\left[w_{0}, \ldots, w_{p}\right]\right)=\partial\left(\left[b_{1}, w_{0}, \ldots, w_{p}\right]\right) \\
& =(-1)^{0}\left[w_{0}, \ldots, w_{p}\right]+(-1)^{1}\left[b_{,} w_{1}, \ldots, w_{p}\right] \\
& +(-1)^{2}\left[b_{1} w_{0}, w_{2}, \ldots, w_{p}\right]+\ldots(-1)^{p}\left[b_{p} w_{1}, \ldots, w_{p-1}\right] \\
& =\left[w_{0}, \ldots, w_{p}\right]-b\left[\left[w_{1}, \ldots, w_{p}\right]+(-1)^{1}\left[w_{0}, w_{2}, w_{p}\right]\right. \\
& \left.+\ldots+(-1)^{p}\left[w_{0}, \ldots w_{p-1}\right]\right)= \\
& =\left[w_{0}, \ldots, w_{p}\right]-b \partial\left[w_{0}, \ldots, w_{p}\right]= \\
& =\left[i d-b_{0} \partial\right)\left[w_{0}, \ldots, w_{p}\right] \\
& \Rightarrow \partial b=i d-b_{0} \partial
\end{aligned}
$$

b is a CHAIN HOMOTOPY between 0 and the identity, on the augmented chain complex LS. (I).

