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BARYCENTRIC SUBDIVISION OF

GENERAL CHAINS

Let X be a topological space
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Before we prove theorem I let's recall
Lebesgue's number Lemma

If the metric space X d is

compact an open cover of X
s given then there exists

a number

370 such that every subset of X

having diameter
less than b is

contained in some member of

the cover



PROOF OF THEOREM 1
Let U be a covering as in the
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p is a chain map
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so P is the chain homotopy

inverse of it
It follows from homotopy invariance

statements that it is an isomorphism
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PROOF OF EXCISION THEOREM
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