
 

THE MAYER VIETORIS LONG
EXACT SEQUENCE

THEOREM
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Proof
Let us first check that O is exact
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Finally note that HEX Hp x

by the map induced by
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We can show how 2 Hnlx Hml AaB

behaves geometrically
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p Cc

We can select such a e that

C at b where at Sp A bespB

A
B

this we can do since we can use

barycentric subdivision
to break down

c into simplices of as small diameter

as desired that still represent
the same

homology class
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Since C is a cycle
D 20 2 a tab and therefore 2b Ja

2pm za 2b EmpCARB


