RETRACTIONS, DEFORMATION RETRACTIONS

Definition

Let X be a space and ACX. A RETRACTION

1: X -> A is a map s.t. r(a)=a Hach.

We say that A is a RETRACT of X.

A subspace A of X is called a STRONG

DEFORMATION RETRACT of X if
there exists a homotopy F: X XI -> X

(called a DEFORMATION) such that

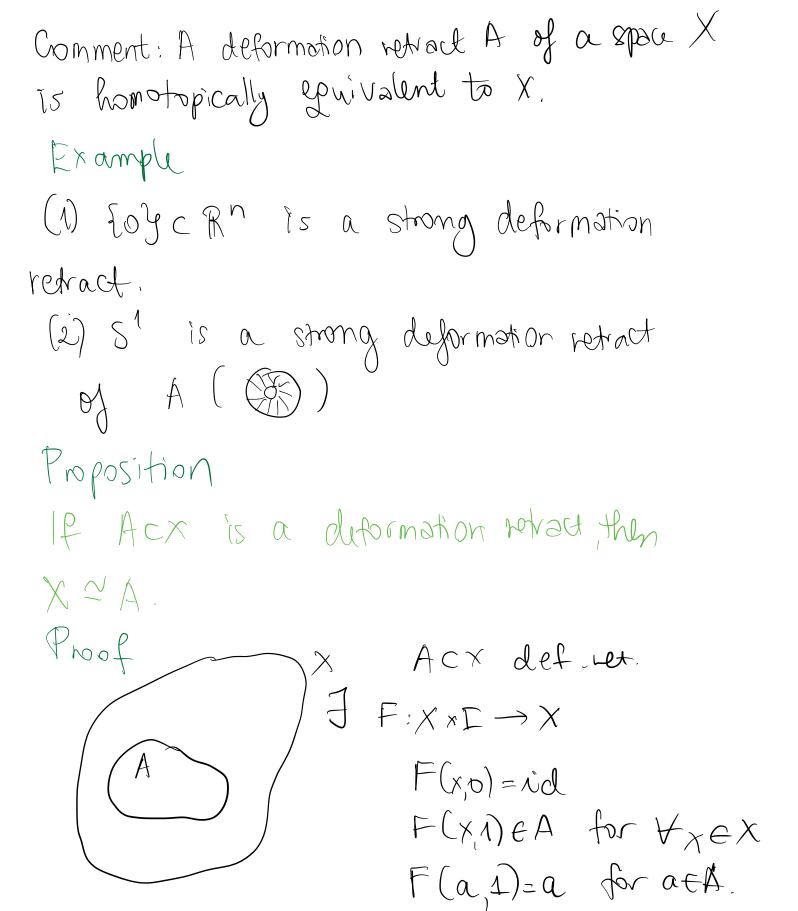
DEFORMATION F(x,0)=XRETRACTION $F(x,1)\in A$ F(a,t)=a for act and all $t\in I$.

It is called a DEFORMATION RETRACT

If the last equation is repulsed only

for t=1.

WARNING: In Hatcher deformation retractions are in fact strong deformation retractions.



 $i:A\hookrightarrow X$ $F(-,1):X\longrightarrow A$

$$F(-,1)$$
oi=id_A by def. of Fli
 $i \circ F(-,4) = F(-,1) \sim 0d$
by def.

So X = A.

PAIRS OF SPACES

Definition Let X, I be topological spaces and ACX & BCY. $f: (X,A) \rightarrow (Y,B)$ means $f: X \to Y$ such that $f(A) \subset B$. Let $f_0, f_1: (X,A) \rightarrow (X,B)$ be maps of pairs. We say they we homotopic If $\exists F: X \times \Sigma \rightarrow \Sigma \text{ with } F(x,0) = f_o(x)$ $F(x,1)=f_1(x)$ $\forall x \in X$ and such that

F(a,t) eB YaeA, teI.

Definition

ACX subspace. A HOHOTOPY $F: \times \times_T \to_Y$ is called **RELATIVE to A** if F(a,t) is independent of to tack. If $f_0 = F(-,0)$, $f_1 = F(-,1)$ we write $f_0 \simeq_{rel,A} f_1$.

Example

A strong deformation retraction is $x = id_x$ is a homotopy relative to the subspace A.

OPERATIONS WITH HOHOTOPIES

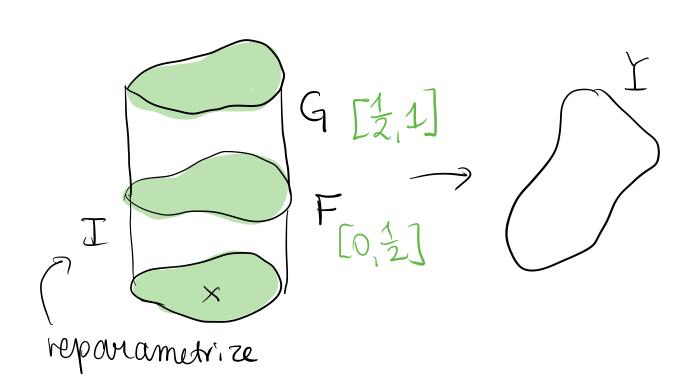
Definition

Let F: XXI -X, G: XXI ->Y be two homotopies, G(x,0)=F(x,1) + XEX.

Define a new homotopy, CONCATENATION,

F*G:
$$X \times I \rightarrow I$$

(comcatenation of FRG)
 $F \times G(x,t) = \begin{cases} F(x,2t) & 0 \le t \le 1 \\ G(x,2t-1) & 2 \le t \le 1 \end{cases}$



One does not need to combine these homotopies at $t=\frac{1}{2}$. We can do it at any point and with

aubitrary speed.

Definition

Let
$$\phi_1, \phi_2$$
: $(I, \partial I) \rightarrow (I, \partial I)$

8.t.
$$\phi_1 |_{\partial \Gamma} = \phi_2 |_{\partial \Gamma}$$
 $\left(\begin{array}{c} \phi_1(0) = \phi_2(0) \\ \phi_1(1) = \phi_2(1) \end{array} \right)$

Let F: XXI > Y be a homotopy.

Define
$$G_1(x,t) = F(x, \phi_1(t))$$

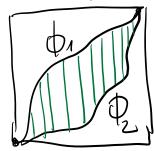
 $G_2(x,t) = F(x, \phi_2(t))$

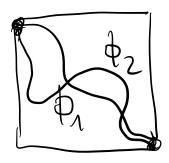
REPARAMETRIZATIONS OF F

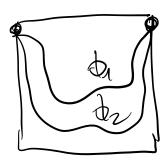
Proposition

$$G_1 \simeq G_2$$
 rel $(x \times \partial I)$.

Proof





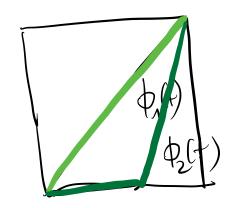


In each of these 4 cases we can use the straight line homotopy: $\lambda \phi_{2}(t) + (1-s) \phi_{1}(t)$ H:(XXI)XI -> I $H(x,t,s) = F(x, sp_2(t) + (1-s) p_1(t))$ $H(x,t,0) = F(x,\phi_{\lambda}(t)) = G_{1}$ H(x,t,1) = $F(x, \phi_2(t)) = G_2$ $H(x,0,s) = F(x,\phi_{\lambda}(0)) = G_{\lambda}(x,0)$ $H(x,1,s)/=F(x,b_2(1))=G_2(x,1)$ these two follow since $\phi_2(0) = \phi_2(0) &$ $\phi_{\Lambda}(1) = \phi_{2}(1)$

Definition Let f:x > Y. the CONSTANT HOHOTOPY on f, const (f): XII-)Y is defined by Const (f) (xt)=f(x) HXEX, tET. Nettragal Let F: XXI -> 1 be a hornotopy, $f_0:=F|_{X\times 0}$ $f_1:=F|_{X\times 1}$ Fx const(f) = rel (XXOI) then Contfo * F ~ F rel (xx0) Proof

Use reparametrization. We \$ SES 1 Gelxit) $G_{\Lambda}(x,t)=F(x,\phi_{\Lambda}(t))^{2}F(x,\phi_{2}(t))$ F(x,t)fx comity F J J F

We again reparametre



THE INVERSE HOMOTOPY

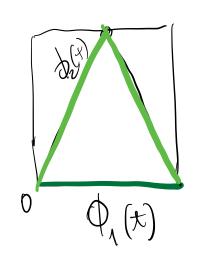
Definition

$$F^{-1}(x,t):=F(x,1-t)$$
.

Proposition

$$F * F^{-1} \simeq const (f_0)$$
 tel $(x \times \partial I)$, where $f_0 := F|_{X \times \{0\}}$.

We will use the statement about reparametrizations.



$$\varphi_{1}(t) = 0$$

$$\varphi_{2}(t) = \begin{cases} 2t & 0 \leq t \leq \frac{1}{2} \\ 2-2t & \frac{1}{2} \leq t \leq 1 \end{cases}$$

Proposition

Let F,G,H be three homotoples XXI-74

S.t. F*G. & G*H vue defined.

then

$$(F*G)*H\cong F*(G*H)$$
 rel(xx21)

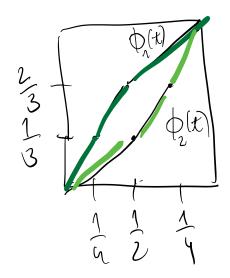
Proof

H	\sim	H
G		F

We again use the reparametrization.

H	
G	
F	

We show that both one homotopy you'v to this



Exercise

Proposition

Let F_1,F_2,G_1,G_2 be homotopies $X \times I \to Y$ with $F_1 \cong F_2$ rel $(x \times \partial I)$ and $G_1 \cong G_2$ rel $(x \times \partial I)$ A.t. $F_1(x,1) = G_1(x,0) \& F_2(x,1) = G_2(x,0) \forall x \in X$. Then $F_1 \times G_1 \cong F_2 \times G_1$ rel $(x \times \partial I)$.

Proof Exercise.

Proposition

or is an equivalence relation on the set of all maps $X \to Y$.

		•