DEGREE OF MAPS f: Sn -> Sn Let f. Sn -> Sn be a map. then f induces $f_*: \widetilde{H}_n(s^n) \to \widetilde{H}_n(s^n)$. Since $H_n(s) \cong ZZ$, there exists precisely one dezz, such that $f_{x}(a) = da \quad \forall a \in \mathbb{Z}$ This number d is called the DEGREE of f and is denoted $dig(f) \in \mathbb{Z}$. SIMPLE PROPERTIES OF DEGREE (1) deg (id) = 1 (2) $s^n \xrightarrow{f} s^n \xrightarrow{g} s^n \xrightarrow{g} deg(gof) = degg \cdot degf$ (3) $lf f \cong g : s^n \xrightarrow{g} s^n \xrightarrow{g} deg(f) = deg(g).$ Proof (1) follows since $(id)_{x} = id$.

(2) follows since
$$(g \circ f)_{*} = g_{*} \circ f_{*}$$

(3) If $f \simeq g$, then $f_{*} = g_{*}$, so
 $d_{eg}(f) = d_{eg}(g)$.

PROPOSITION

Let
$$S^{n} \subset \mathbb{R}^{n+1}$$
 be the n-dim sphere,
write the elements of S^{n} as $(x_{0,...,x_{n}})$.
Let $f: S^{n} \rightarrow S^{n}$ be the mapp
 $f(x_{0,...,x_{n}}) := (-x_{0,x_{1},...,x_{n}})$.
Then $deg(f) = -1$.
Proof
Let $n=0$. Then $f: f-1, 13 \rightarrow f-1, 1^{n}$.
Here map $f(-1) = 1$, $f(1) = -1$.
 $H_{0}(f-1) \oplus H_{0}(f_{1}) \xrightarrow{\mathbb{Z}} H_{0}(S^{n})$
 $Z \oplus Z$ $\int E_{x}$ of the
 (a, b) $\xrightarrow{\mathbb{Z}} f_{x} = Z$ map

$$\begin{split} & \bigvee_{H_0}^{n} (S^{\circ}) & \xleftarrow_{\Xi}^{2} \left\{ (a_{1}, -a)_{1} a \in \mathbb{Z} \right\} (C \mathbb{Z} \oplus \mathbb{Z} \\ & \int_{(-a_{1}, a)}^{(a_{1}, -a_{1})} & \bigvee_{Z}^{n} \\ & & \int_{(-a_{1}, a)}^{(a_{1}, -a_{1})} & \bigvee_{Z}^{n} \\ & & & \int_{(-a_{1}, a)}^{(a_{1}, -a_{1})} & \bigvee_{Z}^{n} \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Hint for the homotopy: 2D case

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ ongleo}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} \cos(\pi t) - x\sin(\pi t) \\ x_1 \end{bmatrix} \begin{bmatrix} -x_0 \\ x_1 \end{bmatrix} + e[0,1]$$

$$H((x_1, x_1, 0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} -x_0, x_1 \end{bmatrix} = T_0(x_0, x_1)$$

$$H((x_0, x_0, 1) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -x_0 \\ x_1 \end{bmatrix} = (x_0, -x_1)$$

$$T_1(x_0, x_1)$$

IMPORTANT EXAMPLE (the antipodal map) Let $G:S^n \rightarrow S^n$ be the map G(x):=-x. Then $deg G = (-1)^{n+4}$.

Proof $6 = U_0 \circ U_1 \circ \ldots \circ U_n$ => deg G= deg To deg Th --- deg Th $=(-T)_{\mu+\sqrt{r}}$ B

COROLLARY 1f = even = 367 id.

COROLLARY

Let n be even and $f: s^n \rightarrow s^n$. Then there exists $x \in s^n$, s.t. $f(x) = \pm x$. Proof

Suppose by contradiction that $f(x) \neq x$, $f(x) \neq -x \quad \forall x \in S^n$. f(x)the straight segment in B^{n+1} connecting -x $x \quad to \quad f(x)$ does not pass through 0.

the same also holds for the segment
connecting
$$-x$$
 to $f(x)$.
Consider $F: S^n \times I \rightarrow S^n$
 $G: S^n \times I \rightarrow S^n$: the denominators
 $F(x,t) := \frac{tf(x) + (1-t)x}{||tf(x) + (1-t)x||} \qquad \text{Fresh}$
 $G(x,t) := \frac{t \cdot (-x) + (1-t)f(x)}{||t \cdot (-x) + (1-t)f(x)||}$
 $G(x,t) := \frac{t \cdot (-x) + (1-t)f(x)}{||t \cdot (-x) + (1-t)f(x)||}$
F is a homotopy between id & f.
 G is a homotopy between f & the
anotopodal map.
 $\Rightarrow deg(f) = 1 & deg(f) = (-1)^{n+1} = -1$
 r
 h is
even

Contradiction.

A tangent vector field is $\{\overline{v}(x)\}_{x\in\mathcal{S}^n} S_{t-1}, \overline{v}(x) \in T_x(S^n)/\overline{v}(x) \text{ and } x \text{ are orthogonal in } \mathbb{R}^{n+1}$ Proof Suppose that $\overline{v}(x) \neq 0 \quad \forall x \in S^n$. Consider $f: S^n \rightarrow S^n, f(x) = \frac{\overline{v}(x)}{\|\overline{v}(x)\|}$ Clearly, $\forall x \quad f(x) \in T_x(S^n)$. But both $x \quad \& -x$ are in $(T_x(S^n))^1$. =7 f(x) = x, -x +x. this is a contradiction with the previous corollary. APPLICATION N=2, S² = Earth's surface $\overline{r}(x) =$ velocity of the wind at XE Earth =) at only anoment 7 a next

=) at any given moment, J a point xEEarth where the wind does not blow. Exercise: Show that S^{2k-1} lodd dim sphere) does have a nowhere vanishing vector field. (HW exercise) CALCULATION OF DEGREES Considur maps $S^n \rightarrow S''$ defined as follows $S^n \approx \mathbb{R}^n \cup \{\infty\}$ (one-point compactification) open sets of the original space + nbhd of 2003 (complement of a comp-set u 2003)

I extends to a homeomorphism that we denote by $\hat{T}: S^n \to \mathbb{R}^n \cup \{\infty\}$ (HW exercise) Now fix a non-singular nxn matrix A. (det A ≠ 0). View A as a homeomorphism $A: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto A \cdot x$ (invertible since A is non-singular). A extends to a homeo. Rrufory -> Rrufory (HW exercise) Denote this extension by $\widehat{A} : \mathbb{R}^n \cup \{\infty\} \longrightarrow \mathbb{R}^n \cup \{\infty\}$