=7 f(x) = x, -x +x. this is a contradiction with the previous corollary. APPLICATION N=2, S² = Earth's surface $\overline{r}(x) =$ velocity of the wind at XE Earth =) at only anoment 7 a next

=) at any given moment, J a point xEEarth where the wind does not blow. Exercise: Show that S^{2k-1} lodd dim sphere) does have a nowhere vanishing vector field. (HW exercise) CALCULATION OF DEGREES Considur maps $S^n \rightarrow S''$ defined as follows $S^n \approx \mathbb{R}^n \cup \{\infty\}$ (one-point compactification) open sets of the original space + nbhd of 2003 (complement of a comp-set u 2003)

I extends to a homeomorphism that we denote by $\hat{T}: S^n \to \mathbb{R}^n \cup \{\infty\}$ (HW exercise) Now fix a non-singular nxn matrix A. (det A ≠ 0). View A as a homeomorphism $A: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto A \cdot x$ (invertible since A is non-singular). A extends to a homeo. Rrufory -> Rrufory (HW exercise) Denote this extension by $\widehat{A} : \mathbb{R}^n \cup \{\infty\} \longrightarrow \mathbb{R}^n \cup \{\infty\}$

Remark: If dutA=0, A does not extend
to
$$\hat{A} : \mathbb{R}^{n} \cup \{\infty\} \to \mathbb{R}^{n} \cup \{\infty\}$$

(thue are points in the kernel, so
 $\|X\| \to \infty$ $\|AX\| \to 0$, but also points with
 $\|X\| \to \infty$ $\|AX\| \to 0$)
PROPOSITION
dug $\hat{A} = \text{sgn dutA}$. $(\text{sgn} = \{+1\})$
Proof
Observation: If the statement holds
for $A' \otimes A''$, then it holds also
for $A' \otimes A''$, then it holds also
for $A' \otimes A''$, then is true because
 $\hat{A}' \cdot A'' = \hat{A}' \circ \hat{A}''$ (check) and
 $\text{deg } (f' \circ f'') = \text{deg } f' \cdot \text{deg } f'':$
 $\text{dug } (A^{1} \cdot A'') = \text{deg } (\hat{A}' \circ \hat{A}'') = \text{deg } \hat{A}' \cdot \text{du} \hat{A}'' = \text{sgn dut } \hat{A} \cdot \text{dut } \hat{A}'' = \text{sgn dut } \hat{A} \cdot \text{sgn dut } \hat{A} \cdot \text{sgn dut } \hat{A} \cdot \text{sgn d$

be written as a product

$$A = E_1 \dots E_p$$
 of elementary matrices
elementary matrices
 E_i , where each E_i is of one of the
following types:
 (I) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$, $\lambda \neq 0$ a new by
 (I) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$, $\lambda \neq 0$ a new by
 (I) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$, $\lambda \neq 0$ a new by
 $A = 0$ and by
 $A = 0$ and $A = 0$
 $A = 0$
 $A = 0$ and $A = 0$
 $A = 0$

Case I.
$$\hat{E} \cong either to id or to \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
,
homotopic
as map
 $S^n \rightarrow S^n$
depending on the sign of A.
Case II $\hat{E} \cong \hat{id}$
Case II \hat{E} performs a reflection with.
Some hyperplane. $\Rightarrow equidistant$
 $for vectors$
 $\hat{E} \cong \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$
 $reflection with$.
 $\mathbb{R}^{-1} \times \{o\} \subset \mathbb{R}^n$
In all 3 cases we get $deg(\hat{E}) = sgn det(E)$
 ξ so the proof follows.
Remark in the proof it is crucial to
homotope E to another matrix

by a path Et of NON-SINGULAR
matriclo. Otherwise, Et won't extend to
Et. See Introduction to Smooth
Manifoldo by UMLEE.
Let
$$f:S^n \rightarrow S^n$$
 be a Smooth map ~
Let $p \in S^n, g := f(p) \in S^n$. Then
 $Df_p: Tp(S^n) \rightarrow T_g(S^n)$
different linear
spaces
 $p \stackrel{V}{\longrightarrow}$
 $f \stackrel{V}{\longrightarrow}$

We'll define Ep(f) as follows: choose & c SO(n+1) (orthogonal matrix with det =+1) st $\mathcal{E}(g) = P$. Consider $\delta \cdot f : S^n \rightarrow S^n, \delta \cdot f(p) = P$ Consider $D(\delta - f)_{q}$ $T_{q}(S^{n}) \rightarrow T_{p}(S^{n})$ $\mathcal{E}_{\rho}(f) := \operatorname{sgn} \operatorname{det}(D(G \circ f)_{\rho})$ Put (this Ep can be +1,0 or -1 Ep(f) does not depend on 6. Indeed, if G'(g)=p is another such map, $(4 \circ 5) \circ (-5 \circ 5) = 4 \circ 10$ $\int t^{+} t$ \Rightarrow det $D(3'\circ f) = det D(3\circ f)$.

PROPOSITION Let f: Sn _> Sn be a smooth map. Assume that gesn is a regular value of f \mathcal{L} f - (g) - 2P's, then deg(f) = Ep(f). Ricall X, Υ smooth manifolds, $f: X \rightarrow \Upsilon$. g is called a regular value of f if either $f^{-1}(q) = \phi$ or $\forall x \in f^{-1}(q)$ the map $Df_x: T_x(x) \rightarrow T_g(y)$ is surjective (in our case an isomorphism) (Note that $\mathcal{E}_p(\mathcal{F}) = \pm 1$, but not of \mathbb{R}^n Proof Identify sn with Anufooz via the stereographical S=p=g (south pole) projection.

WLOG assume p=g=0. this is possible

since we can always compose
$$f$$
 with
a switzble $\partial \in SO(n+1)$, and $SO(n+1)$
is path connected (exercise in thw) Aence,
 $f = G_{2^{\circ}}(\partial_{0}f) \cdot \partial_{1} \quad \begin{array}{c} \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \partial_{1} \partial_{2} \in SO(n+1) \end{array}$
 $\Rightarrow digf = dig G_{2^{\circ}}(\partial_{0}f) \cdot \partial_{1} \quad \begin{array}{c} \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \partial_{1} \partial_{2} \in SO(n+1) \end{array}$
 $\Rightarrow digf = dig G_{2^{\circ}}(\partial_{0}f) \cdot \partial_{1} \quad \begin{array}{c} \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \partial_{2} \in SO(n+1) \end{array}$
 $\Rightarrow digf = dig G_{2^{\circ}}(\partial_{0}f) \cdot \partial_{1} \quad \begin{array}{c} \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{2} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{2} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{2} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma \\ \partial_{1} \operatorname{maps} g + \sigma P \\ \partial_{1} \operatorname{maps} g + \sigma \\ \partial_{1} \operatorname{map$

Define a homotopy F: S"xI -> S" ar follows: $F(x,t) := \begin{cases} f(x) & 2\xi \le |x| \\ f(x) - t(2 - \frac{|x|}{\xi})g(x) & \xi \le |x| \le 2\xi \\ f(x) - tg(x) & |x| \le \xi \end{cases}$ $|\chi| \leq \delta$ interpolation F is well-defined and continuous. F(x,0) = f(x). Put $f_1(x) := F(x,1)$. Note that $f_{\Lambda}(x) = x$ for all $|x| \leq \varepsilon$. Claim: $\forall x \neq 0, f_1(x) \neq 0$, Proof of claim, For $|x| \ge 2\epsilon$, $f_1(x) = f(x)$. assumption? f admits 17 E≤1×1≤2E, then g only once at p (homotopy formula $f_1(x) = 0 \iff f(x) = \frac{2\varepsilon - 1x}{\varepsilon} q(x)$