$\Rightarrow f(x) \neq x,-x \quad \forall x$. this is a contradiction with the previous corollary.
APPLICATION
$n=2, S^{2}=$ Earth's surface
$\vec{v}(x)=$ velocity of the wind at $x \in$ Earth
\Rightarrow at any given moment, f a point $x \in E a r t h$ where the wind does not blow. Exercise: Show that $s^{2 k-1}$ lode dim spheres) does have a nowhere vanishing vector field. (HW exercise)
CALCULATION OF DEGREES
Considu maps $S^{n} \rightarrow S^{n}$ defined as follows.

$$
S^{n} \approx \mathbb{R}^{n} \cup\{\infty\} \text { (one-point compactification) }
$$

open sets of the original space + none of $\{\infty 0\}$ (complement of a comp-set $u\{\infty\}$)

Recall the stereographic projection

π extends to a homeomorphism that we denote by $\hat{\pi}: S^{n} \rightarrow \mathbb{R}^{n} \cup\{\infty\}$ (HW exercise)

Now fix a non-singular $n \times n$ matrix A. $(\operatorname{det} A \neq 0)$. View A as a homeomorphism $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \longmapsto A \cdot x$. (invertible since A is non-singulen):
A extends to a homeo.

$$
\begin{aligned}
& \mathbb{R}^{n} \cup\{\infty\} \rightarrow \mathbb{R}^{n} \cup\{\infty\} \\
& (H W \text { exercise })
\end{aligned}
$$

Denote this extension by

$$
\hat{A}: \mathbb{R}^{n} \cup\{\infty\} \rightarrow \mathbb{R}^{n} \cup\{\infty\} .
$$

Remark: If $\operatorname{det} A=0, A$ does not extend to $\hat{A}: \mathbb{R}^{n} \cup\{\infty\} \rightarrow \mathbb{R}^{n} \cup\{\infty\}$
(there are points in the kennel, so $\|x\| \rightarrow \infty \quad\|A x\| \rightarrow 0$, but also points with $\|x\| \rightarrow \infty \quad(A x \| \infty 0)$
Proposition
$\operatorname{deg} \hat{A}=\operatorname{sgn} \operatorname{det} A . \quad\left(\operatorname{sgn}=\left\{\begin{array}{l}+1 \\ -1\end{array}\right)\right.$
Proof
Observation: If the statement holds for $A^{\prime} \& A^{\prime \prime}$, then it holds also for A^{\prime}. $A^{\prime \prime}$. This is true because $\widehat{A^{\prime}} \cdot A^{\prime \prime}=\widehat{A^{\prime}} \cdot \hat{A^{\prime \prime}}($ check $)$ and $\operatorname{deg}\left(f^{\prime} \circ f^{\prime \prime}\right)=\operatorname{deg} f^{\prime} \cdot \operatorname{deg} f^{\prime \prime}:$ $\operatorname{dig}\left(\hat{A}^{\prime} \cdot A^{\prime \prime}\right)=\operatorname{deg}\left(\hat{A}^{\prime} \circ \hat{A}^{\prime \prime}\right)=\operatorname{deg} \hat{A}^{\prime} \cdot \operatorname{dg} \hat{A^{\prime \prime}}$ $=\operatorname{sgndet} A^{\prime} \cdot \operatorname{sgndet} A^{\prime \prime}=\operatorname{sgn} \operatorname{det} A^{\prime} \cdot \operatorname{det} A^{\prime \prime}=\operatorname{sgndut} A^{\prime} \cdot A^{\prime \prime}$ Every non-singular matrix A can
be written as a product
$A=E_{1} \cdots \cdot E_{p}$ of elementary matrices elementary matrices.
E_{i}, where each E_{i} is of one of the following types:
(I) $\left(\begin{array}{lllll}1 & & & \\ & & 1 & 0 & \\ 0 & \lambda_{1} & & \\ 0 & & \ddots & 1\end{array}\right), \lambda \neq 0$
multiply
a row by

multiply from the right take kt owl 8 add $\begin{gathered}\text { att th } \\ \text { row }\end{gathered}$

take id and interchange rows $j \& K$

It's enough to check our proposition holds for each of these types.

Case I. $\hat{E} \underset{\substack{\lambda \\ \text { homotopic }}}{\sim}$ either to $\hat{i d}$ or to $\left(\begin{array}{lll}1 & & \\ & -1 & \\ & & \ddots\end{array}\right)$, homotopic on map $S^{n} \rightarrow S^{n}$
depending on the sign of λ.
Case II $\hat{E} \simeq \hat{i d}$
Case III E performs a reflection wrA. some hyperplane. \rightarrow equidistant

$$
\hat{E} \simeq\left(\begin{array}{llll}
1 & & \\
& \ddots & \\
& & 1 & \\
& & & -1
\end{array}\right)
$$ to vectors

j\&k
reflection wot.

$$
\mathbb{R}^{n-1} \times\{0\} \subset \mathbb{R}^{n}
$$

In all 3 cases we get $\operatorname{deg}(\hat{E})=\operatorname{sgn} \operatorname{det}(E)$ \& so the proof follows.
Remark in the proof it is crucial to homotope E to another matrix
by a path E_{A} of NON-SINGULAR matrices. Otherwise, E_{t} wont extend to \hat{E}_{t}.

See introduction to 8 roth Manifolds by J.M. Lee
Let $f: S^{n} \rightarrow S^{n}$ be a smooth map \leftarrow
Let $p \in S^{n}, g:=f(p) E S^{n}$. Then

$$
D f_{p}: T_{p}\left(S^{n}\right) \rightarrow T_{2}\left(S^{n}\right)
$$

different linear

$p^{n}(t)$ is a curve in M with $m(0)=p$
 the velocity vector of fog)

Remark= Taking $\operatorname{det}\left(D f_{p}\right)$ doesn't make sense since it depends on the choice of bases.

We'll define $\varepsilon_{p}(f)$ as follows: choose $b \in S O(n+1)$ (orthogonal matrix with $\operatorname{det}=+1)$ st. $\quad 6(g)=p$.
Consider $b \circ f: s^{n} \rightarrow s^{n}, b \circ f(p)=p$.
Consider

$$
D(b \circ f)_{p} \cdot T_{p}\left(S^{n}\right) \rightarrow T_{p}\left(S^{n}\right)
$$

Put $\varepsilon_{\varphi}(f):=\operatorname{sgn} \operatorname{det}\left(D(\sigma \circ f)_{p}\right)$

$$
\text { I this } \varepsilon_{p} \text { can }
$$

$$
\text { be }+1,0 \text { or }-1
$$

$\varepsilon_{p}(f)$ does not depend on 6. Indeed, if $\sigma^{\prime}(g)=p$ is another such map,

$$
\begin{aligned}
& \sigma^{\prime} \circ f=(\underbrace{}_{\delta^{\prime} \circ \sigma^{-1}=+1}) \cdot(z \circ f) \\
& \Rightarrow \operatorname{det} D\left(\sigma^{\prime} \circ f\right)=\operatorname{det} D(\sigma \circ f) .
\end{aligned}
$$

PROPOSITION
Let $f: S^{n} \rightarrow S^{n}$ be a smooth map. Assume that $g \in S^{n}$ is a regular value of f $\& f^{-1}(q)-\{p\}$, then $\operatorname{deg}(f)=\varepsilon_{p}(f)$. Recall.
$x, 1$ smooth manifolds, $f: x \rightarrow 1.2$ is called a regular value of f if lither $f^{-1}(g)=\phi$ or $\forall x \in f^{-1}(g)$ the map of: $: T_{x}(x) \rightarrow T_{g}(y)$ is surjective (in our case an isomorphism) (Note that $\varepsilon_{p}(f)= \pm 1$, but rot 0)

Proof
Identify s^{n} with $R n \cup\{\infty\}$ via the stereographical projection.

WLOG assume $p=y=0$. this is possible
since we can always compose f with a suitable $\quad b \in S O(n+1)$, and $S O(n+1)$ is path connected (exercise in HW) hence,

$$
\begin{aligned}
f & \sim G_{2^{\circ}}(b \circ f) \cdot b_{1} \quad \\
\Rightarrow \operatorname{leg} f & b_{1} \text { maps } g \text { to to } p \\
b_{2^{\circ}}(b \circ f) \cdot G_{1} & G_{2} \text { maps } p \text { to } 0
\end{aligned}
$$

Also $\varepsilon_{0}\left(b_{2}(b \circ f) \cdot b_{1}\right)=\operatorname{sgn} \operatorname{det} D\left(b_{2} \circ(b \circ f) \circ b_{1}\right)_{0}=$

$$
\begin{aligned}
& =\text { chain rule }\left(b_{2} \cdot D(b \circ f)_{p} \cdot G_{1}\right)=\operatorname{sgn} \operatorname{det} \sigma_{2} \cdot \operatorname{det} D(b \circ f)_{p} \cdot \operatorname{det} b_{1}= \\
& =\operatorname{sgn} \operatorname{det} \\
& =\operatorname{sgn} D(b \circ f)_{p}=\varepsilon_{p}(f)
\end{aligned}
$$

Step 1 Assume $D f(0)=i d$.
By Taylor's theorem from analyses we can write

$$
f(x)=x+g(x) \text { for }\|x\| \leq 5 \text {, where }\|g(x)\|=\sigma(|x|)
$$

\Rightarrow For $\varepsilon>0$ small enough $\frac{\|g(x)\|}{\|x\|}>0$

$$
\begin{aligned}
& \frac{\|g(x)\|}{\|f(x)\|}=\frac{\|g(x)\|}{\|x+g(x)\|} \leq \frac{\|g(x)\|}{\| x \mid} \\
& f(x) \neq 0 \text { for } \\
& <\frac{1}{100} \forall 0<|x| \leq 2 \varepsilon
\end{aligned}
$$

$x \neq 0$ by assumption

Define a homotopy $F: S^{n} \times I \rightarrow S^{n}$ ar follows:

$$
\begin{aligned}
& \text { Lows: } \\
& F(x, t):= \begin{cases}f(x) & 2 \varepsilon \leqslant|x| \\
f(x)-t\left(2-\frac{|x|}{\varepsilon}\right) g(x) & \varepsilon \leqslant|x| \leq 2 \varepsilon \\
f(x)-\operatorname{tg}(x) & |x| \leq \varepsilon\end{cases}
\end{aligned}
$$

interpolation
F is well-defined and continuous.

$$
F(x, 0)=f(x) . \text { Put } f_{1}(x):=F(x, 1)
$$

Note that $f_{1}(x)=x$ for all $|x| \leq \varepsilon$.
Claim: $\forall x \neq 0, f_{1}(x) \neq 0$.
proof of claim: For $|x| \geq 2 \varepsilon, f_{1}(x)=f(x)$. assumption:
If $\varepsilon \leqslant|x| \leqslant 2 \varepsilon$, then f admits g only once homotopy formula at p

$$
f_{1}(x)=0 \Leftrightarrow f(x)=\frac{2 \varepsilon-|x|}{\varepsilon} g(x)
$$

