Define a homotopy F: S"xI -> S" ar follows: $F(x,t) := \begin{cases} f(x) & 2\varepsilon \le |x| \\ f(x) - t(2 - \frac{|x|}{\varepsilon})g(x) & \varepsilon \le |x| \le 2\varepsilon \\ f(x) - tg(x) & |x| \le \varepsilon \end{cases}$ $|\chi| \leq \delta$ interpolation F is well-defined and continuous. F(x,0) = f(x). Put $f_1(x) := F(x,1)$. Note that $f_{\Lambda}(x) = x$ for all $|x| \leq \varepsilon$. Claim: $\forall x \neq 0, f_1(x) \neq 0$, Proof of claim, For $|x| \ge 2\epsilon$, $f_1(x) = f(x)$. assumption? f admits 17 E≤1×1≤2E, then g only onle at p (homotopy formula $f_1(x) = 0 \iff f(x) = \frac{2\varepsilon - 1x}{\varepsilon} q(x)$

But if the latter equality holds for some X,
then
$$\frac{|g(x)|}{|f(x)|} = \frac{\varepsilon}{2\varepsilon \cdot |x|} = \frac{1}{2 \cdot |x|} = \frac{1}{2 \cdot |x|} = \frac{1}{2}$$
.
this is a contradiction with $\frac{|g(x)|}{|f(x)|} < \frac{1}{|z|}$.
If $|x| \le \varepsilon$, then $f_1(x) = x$ and in this case
the claim is obvious.
Claim: For r>0 small enough we have:
 $\forall |x| \le t$, $f_1^{-1}(x) = \{x\}$.
Proof. If the claim doesn't hold, then
 $\exists r_n \rightarrow 0$ and points $|x_n| \le t_m$ and
points y_n with $|y_n| > \varepsilon$ s.t. $f_1(y_n) = x_n$.
 $\frac{1}{|y_n| \le \varepsilon, f_1(y_n) = y_n}$.
Since S^n is compact there exists

a subsequence of
$$y_n$$
, y_{n_k} that converges
to $y := \lim_{k \to a} y_{n_k} \in S^h$. By continuity
 $f_n(y)=0$ because $f_n(y_{n_k})=x_{n_k} \rightarrow 0$.
But $y \neq 0$. Contradiction.
It follows from the previous claim that
 $f_n(S^h \setminus B_o(H)) \subset S^h \setminus B_o(H)$
 $f_n = id_{3k}$
 $f_n(B_o(H)) = B_o(r)$, in fact $f_n|_{B_o(H)} = id_{B_o(H)}$
 $f_n(B_o(H)) = B_o(r)$, in fact $f_n|_{B_o(H)} = id_{B_o(H)}$.
 $f_n(B_o(H)) = B_o(r)$, in fact $f_n|_{B_o(H)} = id_{B_o(H)}$.
 $f_n(B_o(H)) = B_o(r)$, in fact $f_n|_{B_o(H)} = id_{B_o(H)}$.

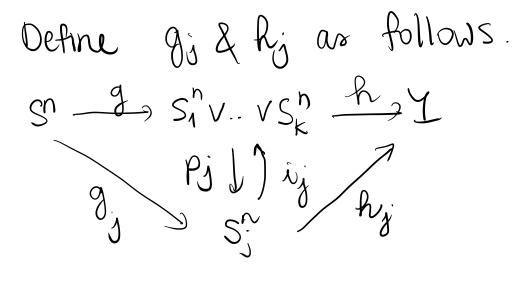
Proof Identify K=B(R). Do a stereographical projection from Libbd of N the south pole and identify K with the image. The image Is a ball and hence convex, therefore we can take the standard linear homotopy $G(X,t) = tX + (1-t)f_1(x)$ to homotope f_1 to the identity. CONCLUSION: fr≃f, and f,~id $=7 \operatorname{degf} = \operatorname{degid} = +1 = \varepsilon_{o}(f)$

Step 2 Assume $Df_{(6)}$ general. Put $A=Df_{(6)}$. Since 0 is a regular Value, then A when viewed as a new matrix is non-singular Consider $h:=\widehat{A}^{-1} \circ f$. Observe that

=) $S'_{S'-(E_1U-UE_k)} \approx S_1^n V V S_k^n$, where

 $S_{j}^{n} := S_{S^{n} \setminus E_{j}}^{n}$ Clearly, f factors as a composition as $f = h \circ g$, $S^n \xrightarrow{g} S_1^n \vee \cdots \vee S_k^n \xrightarrow{h} Y$. Put $i_{\chi}: S_{1}^{n} \longrightarrow S_{1}^{n} \vee ... \vee S_{K}^{n}$ to be the inclusion, $P_j: S_1^n \vee \ldots \vee S_k^n \to S_j^n$ is the projection. Then
$$\begin{split} & \bigoplus_{j=1}^{k} \widetilde{H}_{p}(S_{j}^{n}) \xrightarrow{\cong} \widetilde{H}_{p}(S_{j}^{n} \vee S_{k}^{n}) \text{ and the} \\ & j = 1 \end{split} \qquad \text{isomorphism is induced by } \underbrace{\bigoplus_{j=1}^{k} (ij)}_{j=1} \times \cdot \cdot \cdot \\ & (\text{Proposition about wedge product from class}) \end{split}$$
the inverse of this map is $\bigoplus_{i=1}^{k} (p_i)_{\star}$.

 $\sum_{j=1}^{n} (\hat{v}_{j})_{*} \circ (p_{j})_{*} = id_{\mathcal{H}_{n}}(S_{n}^{n} \vee .. \vee S_{\kappa}^{n})$



We also define $f_j: S^n \to Y$ $f_{j} := h_{j} \circ g_{j}$ collapses all Ei except Ei and the complements to a point, then applies f & finally push this to I More precisely, $f_j(x) = \lambda f(x)$ XEEg X∉Eg Yo $S^{\mathfrak{h}}_{\lambda}$

THEOREM

$$f_{\star} = \sum_{j=1}^{k} (f_{j})_{\star} : H_{n}(s^{n}) \rightarrow H_{n}(Y).$$

$$Proof \quad Let \quad d \in H_{n}(s^{n}).$$

$$g_{\star}(a) = \sum_{j=1}^{k} (i_{j})_{\star} (p_{j})_{\star} g_{\star}(a) =$$

$$= \sum_{j=1}^{k} (i_{j})_{\star} (g_{j})_{\star} (d)$$

$$= \sum_{j=1}^{k} f_{*}(\alpha) = h_{*} g_{*}(\alpha) =$$

$$= \sum_{j=1}^{k} h_{*}(\lambda_{j})_{*}(g_{j})_{*}(\alpha) =$$

$$= \sum_{j=1}^{k} (h_{j})_{*}(g_{j})_{*}(\alpha) =$$

$$= \sum_{j=1}^{k} (f_{j})_{*}(\alpha)$$

COROLLARY

Let $f: S^n \rightarrow S^n$ be a smooth map and let pesⁿ be a regular value. Assume that $f^{-1}(p) = 2 g_{1}, ..., g_{k}$ $degf = \sum_{j=1}^{\infty} \mathcal{E}_{g_j}(f)$. $\int \log degree d$ then If $f^{-1}(p) = \phi$ (i.e. f is not f at g_j surjichve), then digf=0. (Note: this result is independent of homology theory as long as the coefficient group is Z)

Proof

Assume first that $f^{-1}(p) \neq \phi$. By the implicit Sunction theorem there exists an open ball BCSⁿ around p s.t. $f^{-1}(B) = \prod_{j=1}^{K} B_j^*$, where B_j is an open