Consider the LES of
$$(K^{(n)}, K^{(n-1)})$$
:
 $\Rightarrow H_{p+1}(K^{(n)}, K^{(n-1)}) \xrightarrow{\partial_{x}} H_{p}(K^{(n-1)}) \xrightarrow{\partial_{x}} H_{p}(K^{(n)}) \rightarrow H_{p}(K^{(n)}, K^{(n)}) \xrightarrow{\partial_{x}}$
 $\cdot If p \neq n$, then is is surjective
 $\cdot If p \neq n$, $n \rightarrow then i \approx is an isomorphism$
Fix a positive index $p > 0$. By induction on n
 it is easy to show that $H_{p}(K^{(n)}) = 0 \forall p \geq n$.
Basis: $n = 0$, $H_{p}(K^{(n)}) = 0 \forall j > 0$.
Similarly, it is easy to show that
for $p = n$ we have the exact sequence
 $0 \rightarrow H_{n}(K^{(n)}) \xrightarrow{\partial_{x}} H_{n}(K^{(n)}, K^{(n-1)}) \xrightarrow{\partial_{n+1}} U$
 $P_{n} = \frac{1}{2n} \cdot \partial_{n} \qquad H_{n-1}(K^{(n+1)}, K^{(n-2)})$
 $a_{n+1} U$
 $H_{n-2}(K^{(n-2)})$

For
$$n+1$$
 we get (x,x)
 $0 \rightarrow H_{n+1}(K^{(n+1)}) \xrightarrow{j_{n+1}} H_{n+1}(K^{(n+1)}) \xrightarrow{j_{n+1}} H_{n}(K^{(n)}) \xrightarrow{j_{n+1}} H_{n}(K^{(n-1)}) \xrightarrow{j_{n+1}} H_{n}(K^{(n-1)}) \xrightarrow{j_{n+1}} H_{n}(K^{(n-1)}) \xrightarrow{j_{n+1}} H_{n}(K^{(n-1)}) \xrightarrow{j_{n+1}} H_{n-1}(K^{(n-1)})$

CLAIM
$$\beta_n \circ \beta_{n+1} = 0$$
.
Proof $\beta_n \circ \beta_{n+1} = j_{n-1} \circ \partial_n \circ j_n \circ \partial_{n+1} = 0$.
 0 since
the above
septence
is exact

囫

CLAIM ker
$$\beta_n = \ker \partial_n = \operatorname{Im} j_n$$

 $\operatorname{Im} \beta_{n+1} = j_n (\operatorname{Im} \partial_{n+1}).$

Proof

jn-1 is injective, kerßn=kerðn. kerðn=lmjn because the septence (*) is exact. Second epuality: exercise (diagram chasing).

Conclusion $H_n(K^{(n)}) \xrightarrow{\cong} ken \beta_n$ $\lim_{lm} (\partial_{n+l}) \xrightarrow{j_n} \lim_{m} \beta_{n+1}$

 $= H_{n}(K^{(n+1)}) \cong coker(\partial_{n+1}) \cong ker Bn$ $= H_{n}(K^{(n+1)}) \cong coker(\partial_{n+1}) \cong h_{n}(B_{n+1})$ $= H_{n}(K^{(n+1)}) \cong H_{n}(K^{(n)}) \cong H_{n}(K^{(n)})$ $= H_{n}(K^{(n)}) \cong H_{n}(K^{(n)})$ $= H_{n}(K^{(n)}) = H_{n}(K^{(n)})$ $= H_{n}(K^{(n)})$ $= H_{n}(K^{(n)})$ $= H_{n}(K^{(n)})$ $= H_{n}(K^{(n)})$

≤ coker (∂n+1)

CLAIM In $H_n(K^{(n+1)}) \xrightarrow{i_*} H_n(K^{(n+2)}) \xrightarrow{} H_n(K^{(n+3)}) \xrightarrow{} \dots$ all maps are isomorphisms. Proof Let in then

$$H_{n+1}(K^{(i+1)},K^{(i)}) \rightarrow H_{n}(K^{(i)}) \rightarrow H_{n}(K^{(i+1)})$$

$$H_{n+1}(K^{(i+1)},K^{(i)})$$

$$H_{n}(K^{(i+1)},K^{(i)})$$

$$H_{n}(K^{(i+1)},K^{(i)})$$

$$H_{n}(K^{(i+1)},K^{(i)})$$

COROLLARY
If K is finite dimensional (Ino s.t.

$$K^{(n_0)} = K^{(n_0+1)} = ... = K^{(n_0+i)} = ... = K$$
), then
 $H_n(K) \cong H_n(K^{(n_1)}) = ter B_n/Im B_{n+1}$
 $H_n(K^{(n+2)}) = ... H_n(K^{(n_0)}) = H_n(K)$

DEFINITION

Define a chain complex $\rightarrow H_{n+1}(K^{(n+1)}, K^{(n)}) \xrightarrow{\beta_n} H_n(K^{(n)}, K^{(n+1)}) \xrightarrow{\beta_n} H_{n-1}(K^{(n+1)}, t^{(n+2)})$ $- \xrightarrow{\beta_2} H_1(K^{(n)}, K^{(0)}) \xrightarrow{\beta_1} H_0(K^{(0)}) \rightarrow 0$

In this sequence β_1 is the connecting homomorphism from LES of $(K^{(1)}, K^{(0)})$. We denote the n-hormology group of this complex by $H_n^{CW}(K)$.

COROLLARY If K is finite dimensional, then $H_n^{CW}(K) \cong H_n(K).$

Remark: this statement holds for any Cw-complex K, but we will not prove it here. Since Hp(K(p),K(p)) is isomorphic to SEIP, we will actually want to work with a chain complex with chair groups Cp(K) = DZ.G. DEFINITION Define two homorphisms: $C_n^{CW}(K) \xrightarrow{\Upsilon} H_n(K^{(n)}, K^{(n-1)})$ Recall that $(B_{c}^{n}, \partial B_{c}^{n}) \xrightarrow{f_{d}} (K^{(n)}, K^{(n-i)})$ Denote by [Br] the generator of $H_n(B_{\mathcal{S}}^n, \partial B_{\mathcal{S}}^n).$ $\Psi\left(\sum_{n} n_{\sigma} \cdot c\right) = \sum_{n} n_{\sigma} (f_{\sigma})_{*} (E B_{\sigma}^{n})$ To define \overline{P} , let \overline{P} , $H_n(\mathfrak{S}, \mathfrak{X}) \to \mathbb{Z}$