Since $H_{p}\left(K^{(p)} K^{(p-1)}\right)$ is isomorphic to $\bigoplus_{b \in I_{p}}^{\oplus} \mathbb{Z} \cdot 6$, we will actually want to work with a chain complex with chair groups

$$
C_{p}^{(W)}(k)=\oplus \neq \mathbb{Z} \cdot \sigma
$$

DEFINITION
Define two fomomorphusins:

$$
c_{n}^{c w}(K) \underset{\Phi}{\stackrel{\Psi}{\rightleftarrows}} H_{n}\left(K^{(n)}, K^{(n-1)}\right)
$$

Recall that $\left(B_{G}^{n}, \partial B_{\sigma}^{n}\right) \xrightarrow{f_{\sigma}}\left(K^{(n)}, K^{(n-1)}\right)$.
Denote by $\left[B_{6}^{n}\right]$ the generator of $H_{n}\left(B_{b}^{n}, \partial B_{b}^{n}\right)$.

$$
\Psi\left(\sum_{\sigma} n_{\sigma} \cdot \sigma\right)=\sum_{\sigma} n_{G}\left(f_{\sigma}\right)_{*}\left(\left[B_{\sigma}^{n}\right]\right)
$$

To define Φ, let $\phi_{n}: H_{n}(\delta, *) \rightarrow \mathbb{Z}$
be the unique homomorptusim sit

$$
\phi_{n}\left(\left[S^{n}\right]\right)=1
$$

Recall

$$
\begin{aligned}
\left(K^{(n)}, K^{(n-1)}\right) & \rightarrow\left(K^{(n)} / K^{(n-1)}, *\right) \\
P_{b} & \searrow\left(S_{b}^{n}, *\right)
\end{aligned}
$$

Define

$$
\Phi(\alpha)=\sum_{\sigma \in I_{n}} \phi_{n}\left(\left(\rho_{\delta}\right)_{*}(\alpha)\right) \sigma
$$

We have already proved that I is an isomorphusis (the iso from the last lecture) - check the details yourself.
CLAIM

$$
\Phi=\Psi^{-1}
$$

Proof
It is enough to prove that $\Phi \circ \Psi=i d$ since Ψ is an isomorphism.
Since $c_{n}^{a w}(k)$ is generated by the n-cells 6 , it is enough to check Φ ow (σ) $=6 \quad \forall \sigma$.

$$
\begin{aligned}
\Phi \Psi(\sigma) & =\Phi\left(\left(f_{6}\right)_{*}\left[B_{\sigma}^{n}\right]\right)= \\
& =\sum_{\tau} \Phi_{n}\left(\left(P_{\tau}\right)_{*}\left(f_{\sigma}\right)+\left[B_{\sigma}^{n}\right]\right) \tau \stackrel{*}{=}
\end{aligned}
$$

Note that $P_{\tau} \circ f_{6}=\left\{\begin{array}{cr}\text { constr. at } * & \tau \neq 6 \\ \text { id. } & \tau=6\end{array}\right.$
So

$$
(*)=\phi_{n}\left(\left[S^{n}\right]\right) \cdot 6=6 .
$$

Define a boundary operator $c_{n+1}^{a s}(k) \frac{d_{n+1}}{c_{n}^{a s}}(k)$ by:

Clearly, $d_{n} \circ d_{n+1}=0$ because $\beta_{n} \circ \beta_{n+1}=0$.
Let us unite this differential explicitly. For $\sigma \in c_{n+1}^{a s}(K)$, wite

$$
d_{n+1}(b)=\sum_{\tau \in I_{n} \in \mathbb{Z}}[\tau: \sigma] \cdot \tau
$$

$$
\begin{aligned}
& d_{n+1}(b)-\Phi \beta_{n+1} \psi(\sigma)= \\
& =\Phi j_{n} \circ \partial_{n+1}\left(f_{\sigma}\right)_{*}\left(\left[B_{b}^{n+1}\right]\right)= \\
& =\Phi\left(j_{n}\left(f_{\partial \sigma}\right)_{*}\left(\left[\partial B_{b}^{n+1}\right]\right)\right)
\end{aligned}
$$

nee we ${ }^{t}$ mietipte tells what
here we just use
simplified

$$
\text { notation }=\sum_{\tau} \operatorname{dog}\left(p_{\tau} \circ f_{\partial z}\right) \cdot \tau
$$

So, $[\tau: 6]=\operatorname{dug}\left(p_{\tau} \circ f_{\partial \zeta}\right)$

What is happening geometrically?
 is attached to many cells in $K^{(n)}$

When $n=1, d_{1} \cdot C_{1}^{c w}(k) \rightarrow C_{0}^{w}(k)$ is the same as the simplicial boundary $\operatorname{map} \Delta_{1}(k) \rightarrow \Delta_{0}(k)$.

EXAMPLE
Take $k=\mathbb{R} P^{2}$. This is a $C W$-complex
 one 0-cell b_{0} one 1-cell b_{1} one 2 -all b_{2}

Cw-chain complex

$$
\cdots \rightarrow 0 \rightarrow \mathbb{Z} G_{2} \rightarrow \mathbb{Z} G_{1} \rightarrow \mathbb{Z} \sigma_{0} \rightarrow 0
$$

$d b_{0}=0$
$d b_{1}=0 \ell^{\text {starting } \& \text { ending }}$
point are the same
$d b_{2}=2 \cdot b_{1}$ (or $-2 b_{1}$) sign depends on the choice of genera

$$
\begin{aligned}
& H_{0}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z} \\
& H_{1}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \\
& H_{2}\left(\mathbb{R} P^{2}\right) \cong 0
\end{aligned}
$$

Option \#2 aw structure

0 -cells	
τ_{0}, b_{0}	2 -calls
1 -cells	σ_{2}
τ_{1}, σ_{1}	

Cellular chain complex

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z} \xrightarrow{d_{2}} \mathbb{Z}^{2} \xrightarrow{d_{1}} \mathbb{Z}^{2} \rightarrow 0 \\
& d_{2}\left(\sigma_{2}\right)=2 t_{1}+2 \sigma_{1}=2\left(\tau_{1}+\sigma_{1}\right) \\
& d_{1}\left(\tau_{1}\right)=\tau_{0}-\sigma_{0} \quad \operatorname{ken} d_{1}=\left\langle\tau_{1}+\sigma_{1}\right\rangle \\
& d_{1}\left(b_{1}\right)=b_{0}-\tau_{0} \\
& M_{0}\left(\mathbb{R} P^{2}\right)=\tau_{\left.0, \sigma_{0}\right\rangle}^{\left\langle m d_{1}\right.} \underset{\left\langle\tau_{0}-\sigma_{0}\right\rangle}{\left\langle\tau_{0}-b_{0}, b_{0}\right\rangle} \cong \mathbb{Z} \\
& H_{1}\left(\mathbb{R} P^{2}\right)=\left\langle\tau_{1}+\sigma_{1}\right\rangle / 2\left\langle\tau_{1}+\sigma_{1}\right\rangle \quad \cong \mathbb{Z} / 2 \mathbb{Z} \\
& H_{2}\left(\mathbb{R} P^{2}\right)=k n d_{2}=0
\end{aligned}
$$

When doing exercises you don't have to worry about finding minimal ces-structure exERCISE

Let $M g$ be a closed orientable surface of genus of (connected sum of g many toni)
(1) Find Cw -structure on Mg .
(2) Compute homology groups of Mg .
(1)

For $M g$ we have the following representation

Cw -structure
10 -all σ_{ρ}
$2 g 1$-cells

$$
\begin{aligned}
& a_{1}, a_{2}, b_{1}, b_{2}, \ldots a_{g}, b_{g} \\
& 12-\text { all } b_{2}
\end{aligned}
$$

(2) Cellular chain complex

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z} \xrightarrow{d_{2}} \mathbb{Z}^{2 g} \xrightarrow{d_{1}} \mathbb{Z} \rightarrow 0 \\
& d_{2}\left(\sigma_{2}\right)=a_{1}+b_{1}-a_{1}-b_{1}+a_{2}+b_{2}-a_{2}-b_{2}+\ldots \\
& \cdots+a_{g}+b_{g}-a_{g}-b_{g}=0 \\
& d_{1}\left(a_{i}\right)=0, d_{1}\left(b_{i}\right)=0
\end{aligned}
$$

So,

$$
H_{0}\left(M_{g}\right) \cong \mathbb{Z}, H_{1}\left(M_{g}\right) \cong \mathbb{Z}^{2 g}, H_{2}\left(M_{g}\right) \cong \mathbb{Z}
$$

WINTER 2016 Exam x, 1 aw-complexes
(a) $k \in \mathbb{N}, \omega(k-1)$-cell $\sigma(k+1)$-cell

Show that

$$
\sum_{t k-\text { cells }}[w: t][\tau: b]=0
$$

Proof

$$
\begin{aligned}
d_{n+1}(\zeta) & =\sum_{\tau}[\tau: \zeta] \tau \\
0 & =d_{n} \cdot d_{n+1}(\zeta)=\sum_{\tau}[\tau: \zeta] d_{n}(\tau) \\
& =\sum_{t} \sum_{\omega}[\tau: \zeta][\omega: \tau] w= \\
& =\sum_{k-\text { ells }}(k-1) \text {-ells } \\
& \left(\sum_{\tau}[\tau: \sigma][w: \tau]\right) w \\
& (k-1)-\text {-calls } \\
\Rightarrow & \sum_{\tau}[\tau: b][w: \tau]=0
\end{aligned}
$$

