since after switching i & j in the shound sum, it becomes the negative of the first. the algebraic situation we have now is a sequence of homomorphisms of abelian groups $\rightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_n \xrightarrow{\partial_n} C_n \xrightarrow{\partial_n} C$

with $\partial_n \partial_{n+1} = 0$ for each in. Such a sequence is called a CHAIN COMPLEX. NOTATION (C., ∂_n) The equation $\partial_n \partial_{n+1} = 0$ is equivalent

to the inclusion Iman Keran, where

Im ∂_{n+1} denotes the image of ∂_{n+1} & ker ∂_n the kend of ∂_n . Definition Let (C., ∂_n) be a chain complex. The n-th homology group of (C., ∂_n) $H_n = \frac{\ker \partial_n}{\operatorname{Im} \partial_{n+1}}$.

Elements of ken ∂_n are called Cycles and elements of $Im \partial_{n+1}$ boundaries. Elements of H_n are cosets of $Im \partial_{n+1}$, called homology classes. Two cycles representing the same homology class are said to be homologous.

Definition When $C_h = \Delta_n(x)$, the homology kerdn/ is denoted group (mom) H^(x) and called the nth simplicial homology Intuition: $H_h^A(x)$ captures group of X. the information about n-dim holes in X. Example 1 Homology groups of X V2 \mathbb{X} $[V_0,V_3], [V_1,V_2], [V_1,V_4],$ Vo $\lfloor V_3, V_4 \rfloor >$ $[V_1,V_2] - [V_{0},V_{2}] + [V_0,V_{0}] \Delta_3(x) \geq 0$

Chain complex associated to X $\rightarrow \bigcirc \rightarrow \bigtriangleup_2(x) \xrightarrow{\partial_2} \bigtriangleup_n(x) \xrightarrow{\partial_n} \swarrow(x) \xrightarrow{\bigcirc} \bigcirc$ $\partial_{1} \left(\left[\bigvee_{0} \bigvee_{1} \bigvee_{2} \right] \right)^{-1}$ $= \left[V_{1}, V_{2} \right] - \left[V_{0}, V_{2} \right] + \left[V_{0}, V_{1} \right]$ $\operatorname{Ker} \partial_2$ is trivial, so $H_2(x) = 0$. Also Hi(x)=0 for i23. Kernel of 21: $\partial_{1} \left[V_{0}, V_{2} \right] = V_{2} - V_{0}$ $\sqrt{-\sqrt{2}}$ $\partial_{1} \left[V_{0}, V_{3} \right] = V_{3} - V_{0}$ $\partial_n [v_1, v_2] \geq v_2 - v_1$ $\partial_{\alpha} \left[V_{\alpha} V_{\gamma} \right] = V_{\alpha} - V_{\alpha}$ 31 [V3, Vy] = Vy-V3

$$a (v_{2}-v_{0}) + b (v_{1}-v_{0}) + c (v_{3}-v_{0}) + d (v_{2}-v_{1}) + e (v_{1}-v_{3}) = 0$$

$$e (v_{1}-v_{1}) + f (v_{1}-v_{3}) = 0$$

$$V_{0} (-a - b - c) + v_{1} (b - d - e)$$

$$+ v_{2} (a + d) + v_{3} (c - f) + v_{4} (e + f) = 0$$

$$(b) = f = 0$$

$$b = dt l =$$

$$\begin{array}{c} (2) & (-a-c) - (-a) - (-c) = 0 \\ (a_{2}, -a-c_{2}, c_{2}, -a_{2}, c_{2}, c) = \\ = a(1, -1, 0, -1, 0, 0) + c(0, -1, 1, 0, -1, 1) \end{array}$$

 $\operatorname{Ker} \partial_{1} = \left(\left[V_{e_{1}} V_{2} \right] - \left[V_{e_{1}} V_{1} \right] - \left[V_{e_{1}} V_{2} \right] \right)$ $- \left[V_0, V_1 \right] + \left[V_0, V_3 \right] - \left[V_1, V_1 \right]$ $+ [v_{31}v_{43}]$ $[v_{61}v_{51} - [v_{61}v_{51}] - [v_{51}v_{52}]$ \bowtie $[v_{0}, v_{1}] + [v_{0}, v_{3}] - [v_{1}, v_{4}]$ + [v3 v4] Vy

 $[m\partial_2 = [V_1, V_2] - [V_0, V_2] + [V_0, V_1]$

 $H_1^{\Delta}(X) \cdot ken \partial_1 / \Xi \leq [V_0, \sqrt{n}] \cdot [$ $-\left[v_{1},v_{u}\right]+\left[v_{3},v_{y}\right]\right>$

 $=\mathbb{Z}$ (the space X has one hole

this is an example of a special type of a D-complex, called a SIMPLICIAL COMPLEX. Simplicial complexes can be encoded combinatorially and software exists to compute their homology groups l'coefficients are taken from a finite field, so that the computation teduces to linear algebra).

 $\Delta_{o}(S^{\uparrow}) = \langle v \rangle$ $\Delta_{1}(e) = \langle e \rangle$ $\Delta_{i}(x) = 0 \quad \forall i \geq 2$

$$\Delta_{1}(e) \xrightarrow{\partial_{1}} \sum_{\sigma} (s^{\circ}) \rightarrow 0 \qquad \partial_{1}(e) = v - v = 0$$

Chain complex associated to S¹

$$H_{1}^{A}(x) = \ker \partial_{1} = \langle e7 \cong Z$$

$$H_{0}^{A}(x) = \sum_{\sigma} (s^{\circ}) \xrightarrow{\sim} \cong \langle v \rangle \cong Z$$

$$H_{0}^{A}(x) = 0 \quad \text{for } i \ge 2$$

Questions: The the groups $H_{0}^{A}(x)$ independent
of the choice of D-complex structure on
 x^{2} .
If two D-complexes are homeomorphic,
do they have isomorphic homology groups?
To answer there, we first develop a
more general theory of Singular homology
groups, which have the added benefit
of being defined for all spaces, not just D-x.