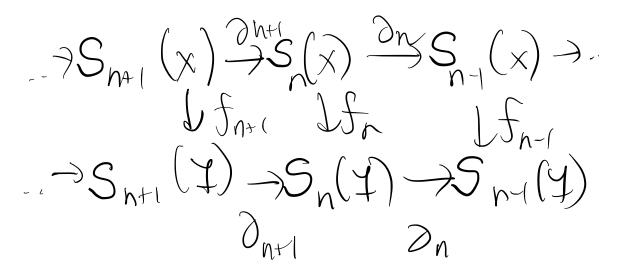
thus we have a commutative diagram



Homomorphisms $f_c: S_o(X) \rightarrow S_o(X)$ that Satisfy $f_c \circ \partial = \partial \circ f_c$ are called CHAIN MAPS from the singular chain complex of X to hot of I.

COROLLARI $(f) f_c(Z_n(x)) \subset Z_n(1)$ $f_{c}(B_{n}(x)) \subset B_{n}(Y)$ In particular & enduces, via fc, a homomorphism $f_* H_n(x) \to H_n(Y)$ by $f_{\star}([c]) = [f_{c}(c)]$. (2) X L Y BZ => $(g \circ f)_{\star} = g_{\star} \circ f_{\star} : H_n(x) \to H_n(z)$ $\& (id_x)_{\star} = id_{H_n(x)}$. Proof (1) If $C \in Z_{N}(X)$ (ie. $\partial C = 0$) \Rightarrow $\partial f_c(c) = f_c(\partial c) = 0$

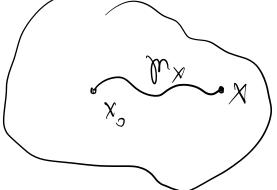
 $=) f_c(c) \in Z_W(\mathcal{I}).$ If $c = \partial d$, $d \in S_{n+1}(x) \Rightarrow$ $f_c(c)=f_r(\partial d)=\partial f_c(d)\in B_n(Y).$ induces a homomorphism D f $Z_n(x)/\xrightarrow{f_x}Z_n(y)/B_n(y)$ $\mathcal{H}_{\eta}(\mathbf{x})$ $H_{h}(\underline{Y})$ 2) Exercise. Notation; f_{\star} , $H(f): H_n(x) \rightarrow H_n(Y)$ fx is called the map induced by

f in homoby COROLLARY If f: X→Y is a homednorphism, then f_{\star} $H_n(x) \rightarrow H_n(Y)$ is an isomorphism 7h. Proof Put $q := f^{-1}: Y \to X$, So fog=idy, gof = idx, $\operatorname{rol}_{H_n(\chi)} = (\operatorname{rol}_{\chi})_{\chi} = (\operatorname{rol}_{\chi})$ $=f_{*}\circ g_{*}:H_{n}(\underline{1})\rightarrow H_{n}(\underline{1})$ $rg H^{\nu}(x) = (rg^{\nu})^{x} = (\partial_{o} t)^{x} =$

 $= \mathfrak{Z}_{\star} \circ \mathfrak{f}_{\star} : \mathfrak{H}_{n}(\mathfrak{X}) \longrightarrow \mathfrak{H}_{n}(\mathfrak{X}).$ THE ZEROTH HOMOLOGY GROUP (Bredon) X space. What is $H_0(x)$? A O-simplex $G: \Delta^{\circ} \to \chi$ to just point a choice of a point in X. A O-chain vi X 15 a finite firmal $Sum C = \sum n_x \cdot x \cdot (learly, \partial(c) = 0$ Define E(c)= Enx eZ. Eapy to check $\varepsilon_i S_o(x) \rightarrow \mathbb{Z}$ is a homomorphism, Let 2 be a singular 1-simplex,

 $Z : \Delta' \rightarrow X$, Put $X_0 = Z(0), X_1 = Z(1)$. $32 = 2(i) - 2(o) = X_{1} - X_{0}$ $\Rightarrow \mathcal{E}(\mathcal{F}) = 1 - 1 = 0$ So for each 1-dimensional chain d we have $\mathcal{E}(\partial d) = 0$. $\Rightarrow \mathcal{E}(\mathcal{B}(x)) = 0$. It follows that & induces a homomorphism $\mathcal{E}_{\mathbf{x}}: \mathcal{H}_{o}(\mathbf{x}) \rightarrow \mathbb{Z}$ Both, E and Ex are called AUGMENTATION.

Theorem If X+\$\$ is path-connected, then $2 : H_0(x) \rightarrow Z$ is an isomorphism. Moreover, Ho(x)=Z.[x] where XEX is any point. Froof Clearly, $Z_{*}([y]) = 1$ $\forall y \in X$. So Ex lo surjective. We must show that Ex is injective. Fix x, EX. YXEX choose a path $m_{x} : T \rightarrow X$ with $m_{x}(o) = X_{o}, m_{x}(A) = X_{o}$



If we view
$$p_x$$
 as a singular
1-simplex, $\exists p_x = x - x_0 \in S_0(x)$.
Let $c \in S_n(x)$, $c = \sum n_x \cdot x$, be a
0-chain. Assume $Ec = ten(E_x)$,
 $v \in \sum n_x = 0$.
Considure the 1-chain $2n_x p_x \in S_1(x)$
 $\Im(2n_x m_x) = \sum n_x (x - x_0) = \sum n_x \cdot x - (\sum n_x) \cdot x_0 = \infty \implies C \in B_0(x)$.

r

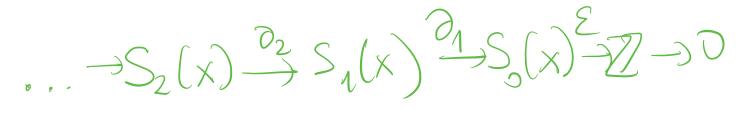
 $=) [c] = 0 \Rightarrow Kar \mathcal{E}_{x} = 0.$

Proposition Let X = d and denote by C the set of Path-connected components

of X. VdEE, denote by XCX the path-connected component corresponding to dithen Hn (x) = D Hn(x), where this isomorphism is induced by inclusions. In particular, $H_{o}(x) \cong \oplus H_{o}(x)$ LEC Ξ θ Z d Eq. Proof Since a singular simplex always has a path-connected image, Sn(x) splits as the direct sum of

its subgroups Sn (Xa). The boundary maps on preserve this direct sym decomposition, taking Sn(X2) to $S_{n-1}(X_{\alpha})$, so ker ∂_n and $Im\partial_{n+1}$ Split similarly as direct sums. Hence, homology groups also split, $H_n(x) \cong \oplus H_n(x_{\chi}).$ REDUCED HOMOLOGY GROUPS (Hatcher) It is often convenient to have a slightly modified version of homology for which a point has trivial homology in all dimensions, including 0. this

COMPLEX



where ε is the augmentation. Usually, we repuire X to be nonempty to avoid a non-trivial homology group in dim -1.

then $H_0(x)$ is the kernel of $E \times so that H_0(x) = H_0(x) \oplus ZZ$

For n > 0 $H_n(x) \cong \widetilde{H}_n(x)$.

THE FIRST HOMOLOGY GROUP We now establish a link between the present subject of topology and our phonious discussion of homotopy In particular, what the Connection between the fundamental group of a space & the of a space jo .

THEOREM
Let X be a path-connected space.
Fix a base point
$$X_0 \in X$$
. Put
 $G_{-} = \mathcal{T}_1(X, X_0)$

then $H_{L}(x) \cong G^{ab_{2}} = G_{[G_{1},G_{2}]}^{-1}$ Abelianization

Recall that $[G_1G_2]$ is the subgroup generated by all the commutators, is elements of the form $[G_1f_1]=g^{-1}h^{-1}gh$. Examples $(T_1(S^n, *) \cong \begin{cases} 0 & n \ge 2\\ Z & n = 1 \end{cases}$