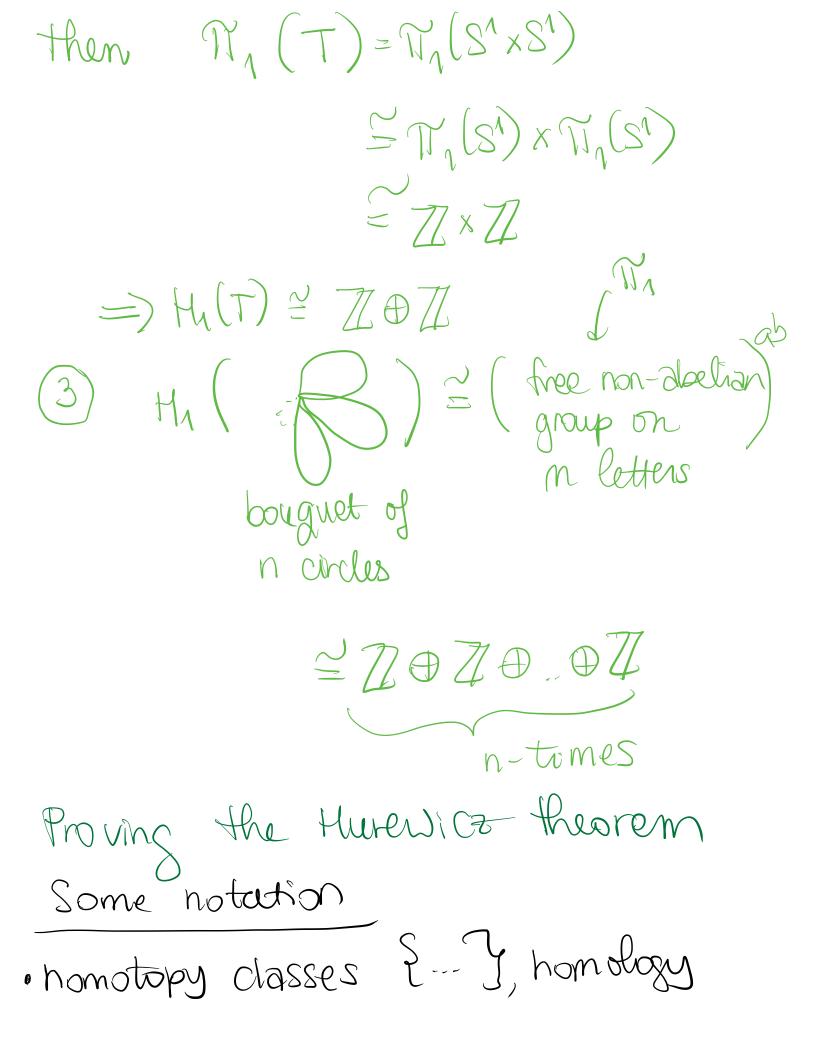
THE FIRST HOMOLOGY GROUP We now establish a link between the present subject of homology and our phonious discussion of homotopy In particular, what the Connection between the fundamental group of a space & the of a space jo .

THEOREM [HUREWICZ THEOREM] Let X be a path-connected space. Fix a base point $X_0 \in X$. Put $G := T_1(X, X_0)$

 $H_{\lambda}(x) \cong G^{ab_{z}} = G_{[G_{1}G_{2}]}$ abelianization

Recall that $[G_1,G_2]$ is the subgroup generated by all the commutators, is elements of the form $[G_1,h] = g^{-1}h^{-1}gh$.

Examples (1) $\Pi_1(S^n, *) \cong \int_1^0 n \ge 2$ $\exists \Pi_1(S^n) = \int_1^0 n \ge 2$ $\exists \Pi_1(S^n) = \int_1^0 n \ge 2$ $\exists \Pi_1(S^n) = \int_1^0 n \ge 2$ $\exists \Pi_1(X \times 1) = \Pi_1(X) \times \Pi_1(T)$ (2) Recall that $\Pi_1(X \times 1) = \Pi_1(X) \times \Pi_1(T)$



classes [...] • f = g means that $f \notin g$ are homotopic & f_{H}^{\sim} 3 means homologous Lemma 1

Let $f,g: I \rightarrow X$ be two paths with f(I) = g(0). Consider the

1-chain $C := f * g - f - g \in S_1(x).$ then C is a boundary (hence $EC] = O \in H_1(x)$). Proof of Lemma 1 Define $G: A^2 \to X$ as follows:

mble the g fort () double good () the ep - Standard Simplex e Ъ -On the edge eo, e, let it be f - on the edge ener let it be g Extend 6 to the rest of A St. on each segment in L, which is perpendicular to lolz, 6 is constant. So on Colz we get that 6 is fæg. us Calculate GC.

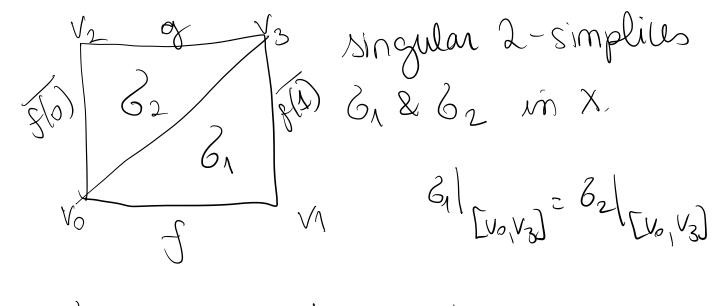
 $\partial G = (-1)^{\circ} G \Big|_{[e_{1},e_{2}]} + (-1)^{\circ} G \Big|_{[e_{0},e_{2}]} + (-1)^{\circ} G \Big|_{[e_{0},e_{2}]} + (-1)^{\circ} G \Big|_{[e_{0},e_{2}]}$ $= Q - f \star q + f = f + q - f \star q$ $\Rightarrow f_*g_-f_-g$ is a boundary. Lemma 2 Othe constant path C: I->X is a boundary. E) Let f:I > x be a path. then the I-chain frft is a boundary. Proof of Lemma 2 (1) Define $T: \mathcal{B} \to \mathcal{X}$ to be the constant simplex (constant at the same point as c). $\mathcal{F} = \mathcal{F} + \mathcal{F} = \mathcal{F} + \mathcal{F}$

2) Define 6: X2 -> X by defining I to be on the edge log as well as ezer. So So Extend 2 to the rest of D by setting it to be Co constant on each sigment parallel to Col2. $\partial G = F^{-1} - const + f$ Since the constant edge is also a boundary by () It, f + r f = (J + S) G51+7 is also a boundary.

Lemma 3
If
$$f,g:I \rightarrow X$$
 are poths with
 $f(o) = g(o), f(i) = g(i)$ and
 $f \approx g$ rel ∂I , then $f \approx g$.
Proof
Let $F: I \times I \rightarrow X$
be a homotopy
rel ∂I between
 f and g . We have
 $F|_{O \times T} = conxt - f(b)$

and
$$F|_{1\times E} = const = f(1)$$
.

this homotopy yields a pair of



 $\partial G_1 = G_1 |_{UV_1, V_2} - G_1 |_{U_2, V_3} + G_1 |_{UV_1, V_3}$ = const F(1) - S1 / [10, V2) + f 362 - 62 [[V2, V2) - 62] [V0, V3] + 62 [[10, V2] $= g - G_z |_{[v_0, v_1]} + cont \overline{f(b)}$ We compute $\partial(b_1 - b_2) = \operatorname{Const} \overline{f(1)} - b_1 \overline{f(v_0, v_2)} + f$ $-g+G_{z}[v_{0},v_{3}]-constf(0)$ = f - g + const f(i) - const f(o)Since constant singular simplices che

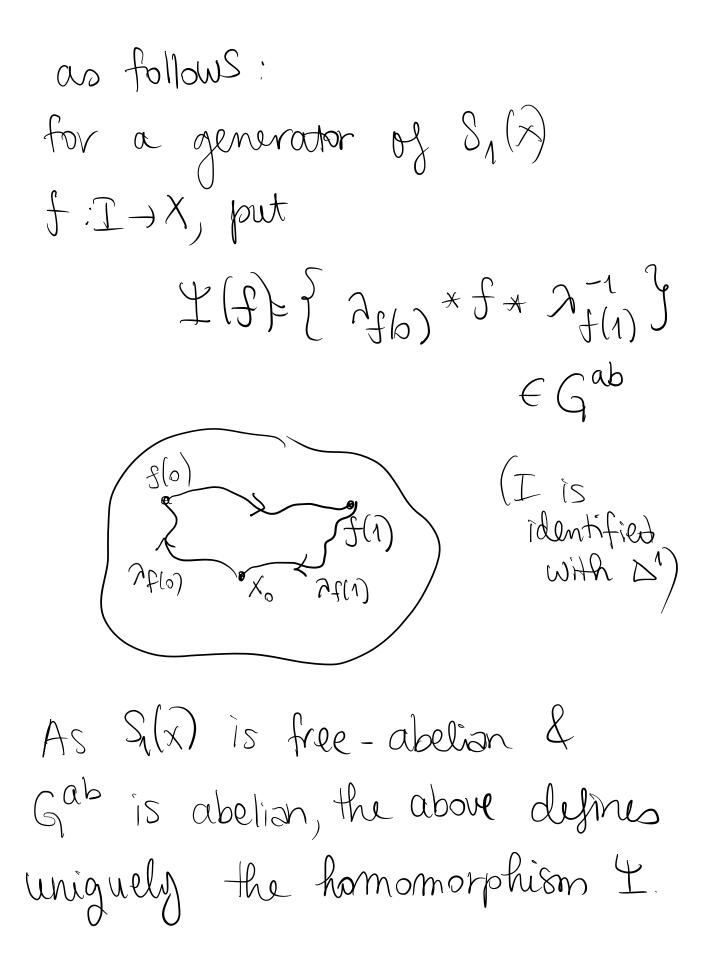
boundaries, so is f-g. this implies
that
$$f_H^{\sim}g$$
.
Now that we now proved these
lemmas we return to the prof
of the Hurewice theorem.
First we need a map from
 $T_1(x,x_0)$ to $H_1(x)$:
 $\phi: T_1(x,x_0) \rightarrow H_1(x)$
Let $\{f\} \in T_1(x,x_0)$ and let $f: I \rightarrow x$ be
a loop representing $\{f\}$ in G .
 f is a cycle since
 $\partial f = f(I) - f(0) = x_0 - x_0 = 0$.
Define

 $\phi(\xi f f) := [f].$

_

CLAIM: \$ is well defined This statement follows from Lemma 3. Let $g \in \{f\}$, then $f \stackrel{\sim}{=} g b y$ definition. By limma 3 we also have that FAJ, ie. LFJ=LgJ CLAIM: Q is a homomorphism of groups. Let $f, g: I \rightarrow X$ be two loops based at X_0 . Then $\phi\left(\{f\} \times \{g\}\}\right) = \phi\left(\{f \times g\}\right)$ $= \left[f \star d \right] = \left[f \right] + \left[d \right] = d(f) + b(d)$ * By Lemma 1 [f * g] = [f] + [g].

Since $H_1(x)$ is abelian, \$ sends [G,G] to O. $\Rightarrow \phi$ induces a homomorphism $\phi_{x}: G^{ab} \longrightarrow H_{1}(x).$ THEOREM [HUREWICZ] Proof For all x=x, choose in an arbitrary way a path 2x from Xo to X in such a way that $A_{x_n} = const.$ Define a homomorphism $f: S_n(x) \rightarrow G^{ab}$



Lemma 4 YbeB(x) we have I(b)=1eGab Proof Because I is a promorphism, it is enough to check that I gets the value 1 on b's of the type 6=22, where G: B-7X to any singular 2-simplex en 6 Put $y_i = \mathcal{G}(e_i)$ h $f := c |_{e_1e_2}$ $g := c |_{e_1e_2}$ 1 Jz $R = G|_{e_{10}}$ Jyo

So far we have P, Px, L. Since $\Upsilon(B_{n}(x)) \ge \{13, \Upsilon$ induces a Romamorphism $\Psi_{\star}:\mathcal{H}_{\Gamma}(X)\to G^{ab}.$ l'we restrict Y to Zn) CLAIM $\Psi_{x} \circ \phi_{x} = id$ Proof If f is a loop based in Xo, then P