Lemma 4
$\forall b \in B(x)$ we have $\Psi(b)=1 \in G^{a b}$.
Proof
Because 1 is a homomorphism, it is enough to check that Ψ gets the value 1 on b 's of the type $b=26$, where $6: \Delta^{2} \rightarrow x$ is any singular 2 -simplex.

$$
\text { Put } \begin{aligned}
y_{i} & =6\left(e_{i}\right) \\
f_{i} & =\left.6\right|_{e_{0} e_{1}} \\
g^{2} & =\left.6\right|_{e_{1} e_{2}} \\
h & =\left.\sigma\right|_{e_{2} 0}
\end{aligned}
$$

$$
\psi(\partial b)=\Psi\left(g-h^{-1}+f\right)=
$$

G abolian $-\psi(g) *\left(\psi\left(h^{-}\right)\right)^{-1} * \psi(f)$

$$
\begin{aligned}
& G^{a b} \text { abelian }=\Psi(f) * \Psi(g) *\left(\Psi\left(h^{-1}\right)\right)^{-1} \\
& =\{\lambda_{y_{0}^{*} f} * \underbrace{\lambda_{y_{1}}^{-1} * \lambda_{y_{1}} * g * \lambda_{2}^{-1} *\left(\lambda_{y_{0}} * h^{-1} * \lambda_{y_{2}}^{-1}\right)^{-1}}_{\text {homotopic }}\}
\end{aligned}
$$ to const

$$
\begin{aligned}
& =\{\lambda_{y_{0}} * f * g * \underbrace{\lambda_{y_{2}}^{\prime} * \lambda_{y_{2}}}_{\tilde{\operatorname{con} s t}} * h * \lambda_{j_{0}}^{-1}\} \\
& =\left\{\lambda_{y_{0}} * f * g * h * \lambda_{y_{0}}^{-1}\right\}=(*)
\end{aligned}
$$

Now $f * g * h \underset{\pi}{\approx}$ consty y_{0} vel ∂I

$$
(*)=\left\{\lambda y_{0}^{*} \lambda_{y_{0}}^{-1}\right\}=1 \in G^{a b}
$$

So far we have
$\phi, \phi_{*}, \underline{L}$
Since $\Psi\left(B_{1}(x)\right)=\{1\}, \Psi$ viduces a homomorphison

$$
\Psi_{*} \cdot H_{1}(x) \rightarrow G^{a b}
$$

t we restrict

$$
\begin{aligned}
& \text { CLAIM } \left.\quad \Psi \text { to } z_{1}\right) \\
& \Psi_{*} \circ \phi_{*}=i d
\end{aligned}
$$

If f is a loop based in x_{0}, then

$$
\begin{aligned}
& \Psi_{*} \circ \phi_{*}\left(\left\{f f^{2}\right)=\Psi_{*}([f])=\right. \\
& =\left\{\lambda_{x_{0}} * f * \lambda_{x_{0}}^{-1}\right\}=\{f\}
\end{aligned}
$$

$\lambda_{\text {cont }} \hat{i}$ cont
CLAIM

$$
\phi_{*} \circ \Psi_{*}=1 d
$$

Proof
Note that $X \ni X \mapsto \lambda_{x}$ endures a homomorphism

$$
\begin{aligned}
& \begin{array}{l}
S_{0}(x) \\
\begin{array}{l}
\text { U } \\
c \\
c
\end{array} S_{1}(x) \\
\sum_{x \in X} n_{c} \\
n_{x} x
\end{array} \sum_{x \in X} n_{x} \lambda_{x}
\end{aligned}
$$

We will denote $\sum_{x \in X} n_{x} \lambda_{x}$ by
$\lambda_{\sum_{x \in x}} n_{x} x$
Lemma 5
(1) Let $\sigma: I \rightarrow X$ be a 1-simplex (a path). Then

$$
\begin{aligned}
\phi_{*} \Psi(\sigma) & =\left[\sigma+\lambda_{\sigma(0)}-\lambda_{\sigma(1)}\right]= \\
& =\left[\sigma-\lambda_{\partial \sigma}\right] .
\end{aligned}
$$

(2) If c is a 1-chain in x, then $\phi_{*} \Psi(c)=\left[c-\lambda_{\partial c}\right]$ In particular, if c is a cycle, then $\phi_{*} \Psi(c)=[c]$.

Proof

$$
\begin{aligned}
& \text { (1) } \phi_{*} q(6)=\phi_{*}\left\{\lambda_{G(0)}+b * \lambda_{(1)}^{-1}\right\}= \\
& =\left[\lambda_{G(0)} * b * \lambda_{G(1)}^{-1}\right] \stackrel{\text { use Lemmas } 1 \& 2}{=} \\
& =\left[\lambda_{G(0)}+b-\lambda_{G(1)}\right]=\left[b-\lambda_{\partial 6}\right]
\end{aligned}
$$

(2) Follows from the linearity of the map $S_{0}(x) \ni c+\lambda_{c} \in S_{1}(x)$ and other maps involved here. If c is a cycle, $\partial c=0$ \&

$$
\phi_{*} \psi(c)=\left[c-\lambda_{\partial c}\right]=[c-0]=[c]
$$

COROLLARY
$\phi_{*} \Psi_{*}[c]=[c]$, ie $\phi_{*} \circ \Psi_{*}=i d$.
This statement therefore completes the proof.
the next important property of singular homology is homotopy invariance. homotopy invariance
Recall that a continuous map $f: x \rightarrow y$ induces a chain map $f_{c}: S_{0}(x) \rightarrow S_{0}(7)$ between chain complexes $S_{.}(x)$ and $S_{0}(7)$ anol f_{c} in turn induces a $\operatorname{map} f_{*}: H_{n}(x) \rightarrow H_{n}(y)$. We have already proved that if f is a homeomorphusin, then f_{*} is an isomorphism. Now we turn our attention to maps between homology groups induced by homotopic maps In particular,
we can prove the following theorem [For this part we follow Hatcher]

THEOREM
If two maps $f, g: x \rightarrow y$ are homotopici, then they induce the same homomorphism

$$
f_{*}=g_{x}: H_{n}(x) \rightarrow H_{n}(7)
$$

In particalan, if f is a homotopy equivalence, then f_{*} is an isomorphism for all n.
Proof
The essential ingredient of the proof is to subdivide $\Delta^{n} \times I$ into simplices.

For a general n :
Let $\Delta^{n} \times\{0\}=\left[v_{0}, \ldots, v_{n}\right]$ and $\Delta^{1} \times\{1\}=\left[w_{0}, \ldots, w_{1}\right]$, where v_{i} and w_{i} have the same image under the projection $\Delta^{n} \times I \rightarrow \Delta^{n}$.
We pass from $\left[k, \ldots, v_{n}\right]$ to $\left[w_{0}, \ldots, w_{n}\right]$ by interpolating a sequence of n-simplices each obtained from the preceding one by moving one vertex $x V_{i}$ up to W_{i}, starting with V_{n} and working backwards to Vo.

First step: $\left[v_{0}, \ldots, v_{n}\right] \rightarrow\left[v_{0}, ., v_{n-1}, \omega_{n}\right]$
Second step: $\left[v_{0}, \ldots, v_{n-1}, w_{n}\right] \rightarrow\left[v_{0}, w_{n-1}, w_{n}\right]$

$$
\left[v_{1}, \ldots v_{i}, w_{i+1}, w_{n}\right] \rightarrow\left[v_{0}, v_{i-1}, w_{i}, w_{n}\right]
$$

The region between these two simplices is exactly the $(n+1)-s x$ $\left[V_{0}, \ldots, V_{i}, w_{i}, \ldots, w_{n}\right]$ which thar $\left[V_{0}, \ldots, V_{i}, w_{i+1}, \ldots, w_{n}\right]$ as a lower face and $\left[v_{0}, v_{i-1}, w_{i}, w_{n}\right]$ as an upper face.

$$
\left.\begin{array}{l}
{\left[v_{0}, v_{1}\right] \rightarrow} \\
{\left[v_{0}, w_{1}\right] \rightarrow} \\
{\left[w_{0}, w_{1}\right]}
\end{array}\right\} \begin{aligned}
& \text { sequence } \\
& \text { of } 1- \\
& \text { simplices }
\end{aligned}
$$

Regions in between that are 2-simplices: $\left[v_{0}, v_{1}, w_{1}\right],\left[V_{0}, w_{0}, w_{1}\right]$

$$
\begin{aligned}
& {\left[v_{0}, v_{1}, v_{2}\right] \rightarrow} \\
& {\left[v_{0}, v_{1}, w_{2}\right] \rightarrow} \\
& {\left[v_{0}, w_{1}, w_{2}\right] \rightarrow} \\
& {\left[w_{0}, w_{1}, w_{2}\right]}
\end{aligned}
$$

Regions in between that are 3-simplas: $\left[V_{0}, V_{1}, V_{2}, W_{2}\right]$

$$
\begin{aligned}
& {\left[v_{0}, v_{1}, w_{1}, w_{2}\right]} \\
& {\left[v_{0}, w_{0}, w_{1}, w_{2}\right]}
\end{aligned}
$$

Altogether, $\Delta^{n} \times I$ is the union of the $(n+1)$-simplices $\left[V_{0}, \ldots, V_{i}, w_{i}, \ldots, w_{n}\right]$, each intersecting the next in an m-simplex face.
Given a homotopy $F: X \times I \rightarrow Y$ from f to g we define

$$
P_{n}: S_{n}(x) \rightarrow S_{n+1}(y)
$$

a homomorphism of groups given on generators by the following formula.

$$
P(G)=\sum_{i=0}^{n}(-1) \underbrace{i} \underbrace{}_{\left[b_{1}\left(b \times i v_{1}, w_{j}, \ldots, w_{n}\right]\right.}
$$

these are singular $(n+1)$-simplices

