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1 Linear Groups

1.1 Basics
Definition 1. A group 𝐺 is linear if it can be embedded into the matrix group GL(𝑛, 𝐾) (for
some field 𝐾 , typically 𝐾 = ℝ, ℂ) such that this image is closed under the natural topology on
GL(𝑛, 𝐾) ≅ 𝐾

𝑛
2 . Such a group (sometimes without the requirement that it is closed in GL(𝑛, 𝐾))

is sometimes called a matrix Lie group.

Linear groups a special case of Lie groups1; a field of study in their own right, which is
central in many parts of mathematics, e.g. differential geometry and group theory, as well
as in theoretical physics, where they provide an algebraic way to study the symmetries of
a given physical system. At appropriate points, we mention how the generalization to Lie
groups works, but it will not be a point of focus.

Some examples of linear groups are:

• SL(𝑛, ℝ) = det
−1

({1}), (note that det ∶ GL(𝑛, ℝ) → ℝ ⧵ {0} is continuous)

• O(𝑛) and SO(𝑛), as well as their complex counterparts U(𝑛) and SU(𝑛) and

• PSL(2, ℝ), while not embeddable into GL(2, ℝ), can actually be embedded into GL(4, ℝ)

(see [EW10], section 9.3).

The groups in the first two points are some of the so called classical groups.

1.2 The Exponential Map
We will want to define a Riemannian metric on a linear group 𝐺. To this end, we shall need
to identify the tangent spaces 𝑇𝑔𝐺. For now, we will concentrate on the tangent space at the
identity, 𝑇𝑒𝐺, and hope to exploit the group structure to study 𝑇𝑔𝐺 for any 𝑔 ∈ 𝐺.

Let us first consider the example of 𝐺 = SO(2, ℝ), the group of rotations of the plane.
Geometrically, it is intuitive that this has the same group and topological structure as 𝑆1 ⊆ ℂ.
If we write

SO(2, ℝ) = {𝑅(𝛼) ∣ 𝛼 ∈ [0, 2𝜋)} where 𝑅(𝛼) =
(

cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼 )

then the isomorphism between 𝑆1 and SO(2, ℝ) is given by 𝑒𝑖𝛼 ↦ 𝑅(𝛼). In 𝑆1, it is immediate
that the tangent space at 1 should is the imaginary line 𝑖ℝ. Indeed, any path 𝜙 ∶ [𝑎, 𝑏] → 𝑆

1 is
of the form 𝑡 ↦ 𝑒

𝑖𝛼(𝑡) for some 𝛼 ∶ [𝑎, 𝑏] → ℝ, and differentiating gets us

𝑑

𝑑𝑡

𝜙 = 𝑖𝛼
′
(𝑡)𝜙(𝑡) such that 𝜙

′
(𝑡0) = 𝑖𝛼

′
(𝑡0) ∈ 𝑖ℝ for any 𝑡0 ∈ [𝑎, 𝑏] with 𝜙(𝑡0) = 1. (1)

By considering the paths given by 𝛼(𝑡) ∶= 𝑟𝑡 for 𝑟 ∈ ℝ, we have formally shown that the
tangent space at 1 is 𝑖ℝ. Note that the map exp ∶ ℂ → ℂ⧵{0} sends 𝑖ℝ onto the circle 𝑆1 (while
trivial, the fact will become much more interesting when we generalize this example).

Even though this result was clear from the getgo, it allows us to think about the same
question in SO(2, ℝ). Begin by noting that 𝑖 = 𝑒

𝑖𝜋/2 corresponds to the rotation

𝑅(𝜋/2) =
(

0 −1

1 0 )

1after Sophus Lie, Norwegian mathematician of the 19th century
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and since 𝑒𝑖𝛼 = 1 + 𝑖𝛼 − 𝛼
2
/2 + ... ∈ 𝑆

1, we may come up with the idea to try the same thing in
SO(2, ℝ):

𝐼 + 𝛼
(

0 −1

1 0 )
−

𝛼
2

2 (

0 −1

1 0 )

2

+ … .

A priori, it is not obvious that series converges and leaves us with a matrix in GL(2, ℝ), but we
can perform the calculation and see that

𝐴 =
(

0 −𝛼

𝛼 0 )
has 𝐴

2𝑛
= 𝛼

2𝑛

(

(−1)
𝑛

0

0 (−1)
𝑛
)
, 𝐴

2𝑛+1
= 𝛼

2𝑛+1

(

0 (−1)
𝑛+1

(−1)
𝑛

0 )
.

By looking at each component of the matrix individually, we can recognize the structure of
the sine and cosine power series, such that

𝑅 = exp(𝐴) ∶=

∞

∑

𝑘=0

𝐴
𝑘

𝑘!

=
(

cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼 )
,

which is what we expected because of the isomorphism with 𝑆1. If now 𝜙(𝑡) ∶= exp(𝑡𝐴) =

𝑅(𝑡𝛼) is a path in SO(2, ℝ), we can calculate

𝑑

𝑑𝑡

𝜙 =

𝑑

𝑑𝑡

∞

∑

𝑛=0

1

𝑛!

(𝑡𝐴)
𝑛
=

∞

∑

𝑛=1

𝑡
𝑛−1

(𝑛 − 1)!

𝐴
𝑛
= 𝐴 exp(𝑡𝐴) = exp(𝑡𝐴)𝐴. (2)

which, if 𝜙(𝑡0) = 𝐼 , shows 𝜙′(𝑡0) = 𝐴, such that the tangent space at 𝐼 in SO(2, ℝ) is {𝛼𝑅(𝜋/2) ∣
𝛼 ∈ ℝ}. Before generalizing our findings, we first seek to gain insight into the matrix expo-
nential.

Definition 2. The map exp ∶ Mat𝑛×𝑛(ℂ) → Mat𝑛×𝑛(ℂ), exp(𝐴) ∶= ∑
∞

𝑘=0
𝐴
𝑘
/𝑘! is called the

matrix exponential.

Proposition 1. The map exp is well defined, and absolutely continuous, and the equation (2)
holds in general.

1.3 Examples of Matrix Exponentials
Diagonal matrices These are the simplest examples:

𝐴 =

⎛

⎜

⎜

⎝

𝑎 0 0

0 𝑏 0

0 0 𝑐

⎞

⎟

⎟

⎠

, so 𝐴
𝑛
=

⎛

⎜

⎜

⎝

𝑎
𝑛

0 0

0 𝑏
𝑛

0

0 0 𝑐
𝑛

⎞

⎟

⎟

⎠

,

and it is obvious that exp(𝐴) = diag(𝑒
𝑎
, 𝑒

𝑏
, 𝑒

𝑐
).

Nilpotent matrices Nilpotent matrices (those that are zero to some power) easily lend
themselves to this calculation. For example:

𝐶 =

⎛

⎜

⎜

⎝

0 𝑏 𝑎

0 0 𝑏

0 0 0

⎞

⎟

⎟

⎠

, 𝐶
2
=

⎛

⎜

⎜

⎝

0 0 𝑏
2

0 0 0

0 0 0

⎞

⎟

⎟

⎠

, 𝐶
3
= 0 ⇒ exp(𝐶) =

⎛

⎜

⎜

⎝

1 𝑏 𝑎 + 𝑏
2
/2

0 1 𝑏

0 0 1

⎞

⎟

⎟

⎠

.
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Upper triangular matrices We examine

𝑇 =
(

𝑎 ∗

0 𝑏)
with 𝑇

2
=
(

𝑎
2

∗

0 𝑏
2
)
, … , 𝑇

𝑛
=
(

𝑎
𝑛

∗

0 𝑏
𝑛
)

where the entries denoted by ∗ have a somewhat complicated form, but we can see that

exp(𝑇 ) =
(

𝑒
𝑎

∗

0 𝑒
𝑏
)
.

By the same calculation, the if the diagonal entries of any (upper or lower) triangular ma-
trix 𝐴 are 𝑎11, … , 𝑎𝑛𝑛, then the diagonal of exp(𝐴) will have entries 𝑒𝑎11 , … , 𝑒

𝑎𝑛𝑛 and thus it’s
determinant will be given by

det(𝐴) = 𝑒
𝑎11

⋯𝑒
𝑎𝑛𝑛

= 𝑒
𝑎11+…+𝑎𝑛𝑛

= 𝑒
tr(𝐴)

.

This is the first example of the above formula, which actually holds for all matrices.

Determinant formula By applying Gaussian elimination, any matrix 𝐴 can be put into a
triangular form 𝑇 = 𝑆𝐴𝑆

−1. We thus have

det(exp(𝐴)) = det(exp(𝑆𝑇 𝑆
−1
)) = det(𝑆 exp(𝑇 )𝑆

−1
) = det(exp(𝑇 )) = 𝑒

tr(𝑇 )
= 𝑒

tr(𝑆𝑇 𝑆
−1
)
= 𝑒

tr(𝐴)

where we have used the simple identity exp(𝑆𝑇 𝑆
−1
) = 𝑆 exp(𝑇 )𝑆

−1 which follows from the
cancellation (𝑆𝑇 𝑆

−1
)
𝑛
= 𝑆𝑇

𝑛
𝑆
−1, as well as the cyclicity of trace tr(𝐴𝐵𝐶) = tr(𝐵𝐶𝐴). Since

𝑒
𝑥 is never zero, we see that any matrix in the image of exp is invertible. Having considered
sufficient examples, we simply state the following theorem:

Proposition 2. The map exp ∶ Mat𝑛×𝑛(ℂ) → GL(𝑛, ℂ) satisfies

1. exp(0) = 𝐼 ,

2. exp(𝑆𝐴𝑆−1) = 𝑆 exp(𝐴)𝑆
−1 for any 𝑆 ∈ GL(𝑛, ℝ),

3. det(exp(𝐴)) = 𝑒
tr(𝐴),

4. if 𝐴 and 𝐵 commute, then exp(𝐴 + 𝐵) = exp(𝐴) exp(𝐵) and so

5. exp(𝑛𝐴) = exp(𝐴)
𝑛 as well as exp(𝐴)−1 = exp(−𝐴).

2 Tangent Space at the Identity
Let us consider the example of 𝐺 = SO(2, ℝ), the group of 2D rotations. Let once again

𝑅(𝛼) ∶=
(

cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼 )
, 𝐴(𝛼) ∶=

(

0 −𝛼

𝛼 0 )
.

Recall what we have found in the introduction: we have shown that exp(𝐴(𝛼)) = 𝑅(𝛼), and
can see that the map 𝜑 ∶ ℝ → 𝐺, mapping 𝑡 ↦ exp(𝑡𝐴) (for any 𝐴 of the above form) spans
the entire group 𝐺. Furthermore, at 𝑡 = 0, we have 𝜑(0) = 𝐼 and we know that the derivative
with respect to 𝑡 is 𝑑𝜑/𝑑𝑡 = 𝐴 exp(𝑡𝐴).

At 𝑡 = 0, the derivative is therefore exp(0)𝐴 = 𝐴, showing that the tangent space at the
identity is {𝐴(𝛼) ∣ 𝛼 ∈ ℝ}, just as in the case of the circle in the complex plane. (In fact, this is
essentialy the matrix representation of imaginary numbers.)
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One parameter subgroup For any linear group, let 𝜑 ∶ ℝ → 𝐺 be a continuous group
homomorphism. Such map 𝜑 is called a one-parameter subgroup, and it is a theorem ([Hal15],
Theorem 2.14) that any such map is of the form 𝑡 ↦ exp(𝑡𝐴) for some 𝐴 ∈ Mat𝑛×𝑛(𝐾).

As a side note: In the more general case of Lie groups, this doesn’t hold anymore, and such
one-parameter subgroups may be used to define the (abstract) exponential map.

2.1 The Lie algebra
We have seen that we can use the exponential map on certain matrices to describe the tangent
space at the identity in 𝐺. The following theorem makes this idea precise, and provides some
information about the existence of an inverse map (the logarithm).

Theorem 1. For any linear group 𝐺 ⊆ GL(𝑛, ℝ) there is a neighborhood 𝐵 of the identity 𝐼 ∈ 𝐺
such that log(𝐵) ⊆ Mat𝑛×𝑛(ℝ) is a neighborhood of zero inside a linear subspace g ⊂ Mat𝑛×𝑛(ℝ)

which may be characterized via

1. g is the maximal linear subspace such that exp(g) ⊂ 𝐺, or similarly

2. g is the set of all matrices 𝑋 such that exp(𝑡𝑋) ∈ 𝐺 for all 𝑡 ∈ ℝ, or

3. g consists of all derivatives 𝜙′(𝑡) of paths 𝜙 ∶ [𝑎, 𝑏] → 𝐺 at points 𝑡 ∈ [𝑎, 𝑏] with 𝜑(𝑡) = 𝐼 .

A full proof can be found in [EW10] (Proposition 9.5), and it involves explicity writing the
matrix logarithm as a power series.

Proposition 3. g is indeed a vector space, and it has finite dimension.

Proof. Let 𝑣, 𝑤 ∈ g, meaning that there are curves 𝜙 and 𝜓 such that (after some reparame-
terization such that the curves are defined over [−1, 1] and are equal to the identity at 0) we
have 𝜙′(0) = 𝑣 and 𝜓′

(0) = 𝑤. If we now define 𝛼(𝑡) ∶= 𝜙(𝑡)𝜓(𝑡), then 𝛼′
(0) = 𝜙

′
(0)𝜓(0) +

𝜙(0)𝜓
′
(0) = 𝑣 + 𝑤, implying 𝑣 + 𝑤 ∈ g.

For 𝑣 ∈ g with path 𝜙(𝑡) and 𝑎 ∈ ℝ, it can be immediately seen that the path 𝑡 ↦ 𝑎𝜙(𝑡)

implies that 𝑎𝑣 ∈ g. Lastly, the zero matrix is contained in g because the constant curve 𝑡 ↦ 𝐼

has derivative equal to the zero matrix everywhere.
Lastly, it is clear that g is finite-dimensional as a subspace of ℝ𝑛

2

.

Lie algebra of SL(𝑛, ℝ) We have already identified the Lie algebra of SO(2, ℝ). As a further
example, we consider 𝐺 = SL(𝑛, ℝ). To calculate the Lie algebra, note that that any element of
so(𝑛, ℝ) ∶= g must have trace zero, since det(exp(𝑣)) = 𝑒

tr(𝑣)
= 1 if and only if tr(𝑣) = 0. But,

by maximality of so(𝑛, ℝ), we have

so(𝑛, ℝ) = {𝑣 ∈ Mat𝑛×𝑛(ℝ) ∣ tr(𝑣) = 0}.

The following statement tells us that we can at least partially recover the group𝐺 from g alone:

Corollary 1. For any linear group𝐺 ⊂ GL(𝑛, ℝ), g uniquely determines the connected component
𝐺
0 of the identity in 𝐺. 𝐺0 is generated by exp(g) and is an open, closed, path-connected (via

smooth curves) and normal subgroup of 𝐺.

4
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We have already seen that a global logarithm cannot exists in our example of 𝐺 = SO(2, ℝ),
where it is obvious that 𝐴(𝛼) ∈ g and 𝐴(𝛼 + 2𝜋𝑘) ∈ g yield the same rotation matrices under
exp. However, if we restrict ourselves to the neighborhood {𝐴(𝛼) ∣ 𝛼 ∈ (−𝜋, 𝜋)} of 0, then exp

becomes a homeomorphism to 𝐺 ⧵ 𝑅(𝜋).
A word of warning: In general, exp ∶ g → 𝐺 need not even be surjective. Take for example

the non-diagonalizable matrix ([Hal15], Example 3.41)

𝐴 =
(

−1 1

0 −1)
∈ SL(2, ℂ).

If there were a matrix 𝑋 ∈ g (i.e. a matrix 𝑋 such that tr(𝑋) = 0) with exp(𝑋) = 𝐴, then it also
must be non-diagonalizable, otherwise the formula exp(𝑆

−1
𝑋𝑆) = 𝑆

−1
exp(𝑋)𝑆 would imply

that 𝐴 is diagonalizable. Thus, 𝑋 may only have a single eigenvalue, which has to be zero,
otherwise tr(𝑋) ≠ 0. This means that 𝑋𝑣 = 0 for some vector 𝑣 ∈ ℂ

2, and so 𝐴𝑣 = exp(𝑋)𝑣 =

exp(0)𝑣 = 𝑣 which is impossible, since 𝐴 has the single eigenvalue −1.
However, the corollay tells us that 𝐴 can be written as a product of matrices in the image

of exp. Indeed, we can write:

exp(𝐴) =
(

1 −1

0 1 )(

−1 0

0 −1)
= exp

(

0 −1

0 0 )
exp

(

𝑖𝜋 0

0 −𝑖𝜋)

and we are satisfied, since so(2, ℂ) consists of traceless 2 × 2 complex matrices, analogously to
its real counterpart.

2.2 Lie Groups and Lie Algebras*
Definition 3. A Lie group is a finite dimensional smooth real manifold that is also a group, and
such that multiplication and inversion are smooth maps.

The theorem 1 has shown us that linear groups can be given local coordinates by using
the tangent space g (translated, if need be). Furthermore, matrix multiplication and inversion
can be written out into a form where it is clear that they are smooth, making linear groups a
special case of Lie groups.

Definition 4. The linear subspace g from the above proposition is called the Lie algebra and
may be considered abstractly as a vector space with a multiplication operation [⋅, ⋅] satisfying:

1. [⋅, ⋅] is bilinear,

2. [𝑣, 𝑣] = 0 and

3. the Jacobi identity [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0 holds.

These also imply antisymmetry [𝑣, 𝑤] = −[𝑤, 𝑣].

In the case of matrix Lie algebras (linear groups are sometimes called matrix Lie groups),
the product operation will always be the commutator of two matrices, [𝑔, ℎ] = 𝑔ℎ − ℎ𝑔 .

The above abstract notion of a Lie algebra shall not be important to us, but is noteworthy
nontheless. The theory of Lie groups concerns itself with the relation between abstract Lie
groups and Lie algebras as above.

5



Seminar on Counting Problems Linear Groups Julian Komaromy & Brandon Kelly

2.3 The adjoint representation
For 𝑔 ∈ 𝐺 (note our use of 𝑣, 𝑤, … for vectors in g and 𝑔, ℎ, … for elements of the group 𝐺) we
define

Ad𝑔 ∶ g → g, 𝑣 ↦ 𝑔
−1
𝑣𝑔

This map is well defined, since exp(𝑡𝑔−1𝑣𝑔) = 𝑔
−1
exp(𝑡𝑣)𝑔 ∈ 𝐺. In fact, this map is bijective,

since Ad−1
𝑔

= Ad𝑔−1 , and we may define Ad ∶ 𝐺 → Aut(g), 𝑔 ↦ Ad𝑔 . The map Ad is called
the adjoint representation of 𝐺, and it is in fact a representation of the group 𝐺. Using this map,
we can think of elements of 𝐺 as linear transformations of the Lie algebra g, and we can gain
insight into 𝐺 by studying Ad.

3 Riemannian Metric

3.1 The Left Translation
Up to this point, we have 𝑇𝑒𝐺 = {𝑒} × g, whose elements consist of (modulo equivalence) of the
derivatives {𝜙′(𝑡0) ∣ 𝜙 ∶ [𝑎, 𝑏] → 𝐺, 𝜙(𝑡0) = 𝑒}. If 𝑔 ∈ 𝐺 is any point of 𝐺 and 𝜓 ∶ [𝑎, 𝑏] → 𝐺

is a path with 𝜓(𝑡0) = 𝑔 , then we can multiply on the left (this is left translation) 𝑡 ↦ 𝑔
−1
𝜓(𝑡),

which is the identity at 𝑡0, such that the derivative at the identity, 𝑔−1𝜓′
(𝑡0), lies in g.

Similarly, any path at the identity can be sent to one at 𝑔 , so the tangent spaces 𝑇𝑔𝐺 and
𝑇𝑒𝐺 are isomorphic, and we can set 𝑇𝑔𝐺 ∶= {𝑔} × g, as well as 𝑇𝐺 = 𝐺 × g. If 𝜙 ∶ [𝑎, 𝑏] → 𝐺 is
a path differentiable at 𝑡0, we denote the tangent vector

𝐷𝜙(𝑡0) ∶= (𝜙(𝑡0), 𝜙(𝑡0)
−1
𝜙
′
(𝑡0)) ∈ {𝜙(𝑡0)} × g ∈ 𝑇𝐺

By definition, we may see that

𝐷(𝑔𝜙)(𝑡0) = (𝑔𝜙(𝑡0), 𝑣) 𝐷(𝜙𝑔
−1
)(𝑡0) = (𝜙(𝑡0)𝑔

−1
, 𝑔𝑣𝑔

−1
).

We can write the above relations in a slightly different way by considering the left and right
translations

𝐿𝑔 ∶ 𝐺 → 𝐺, ℎ ↦ 𝑔ℎ 𝑅𝑔 ∶ 𝐺 → 𝐺, ℎ ↦ ℎ𝑔
−1
.

The derivatives of the translations are then

(𝑑𝐿𝑔)ℎ ∶ 𝑇ℎ𝐺 → 𝑇𝑔ℎ𝐺, (ℎ, 𝑣) ↦ (𝑔ℎ, 𝑣) (𝑑𝑅𝑔)ℎ ∶ 𝑇ℎ𝐺 → 𝑇ℎ𝑔−1𝐺, (ℎ, 𝑣) ↦ (ℎ𝑔
−1
, 𝑔𝑣𝑔

−1
)

where we have already used the above property of the left translation to identify all tangent
spaces.

3.2 The left invariant metric
We have identified the tangent spaces of 𝐺 and studied translations of them. Since g is a finite
vector space, we easily choose some inner product ⟨⋅, ⋅⟩ on g and define a Riemannian metric
on 𝑇𝐺 by setting ⟨𝑢, 𝑣⟩𝑔 ∶= ⟨𝑢, 𝑣⟩.

Analogously to the construction seen for the hyperbolic plane, this inner product then can
be used to define a norm ‖⋅‖, the length of curves 𝐿(𝜙) and finally ametric 𝑑𝐺(𝑔0, 𝑔1) ∶= inf𝜙 𝐿(𝜙)

(infimum is over all paths 𝜙 from 𝑔0 to 𝑔1), where 𝑔0, 𝑔1 ∈ 𝐺
0. Note the restriction to the

connected component of the identity 𝐺0, which is needed since we can’t reach points outside
of 𝐺0 via smooth curves. Furthermore, for ℎ ∈ 𝐺

0, we have left-invariance

𝑑𝐺(𝐿ℎ𝑔0, 𝐿ℎ𝑔1) = 𝑑𝐺(ℎ𝑔0, ℎ𝑔1) = 𝑑𝐺(𝑔0, 𝑔1)
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which we can see already in the Riemannian metric: if we have (𝑔, 𝑢), (𝑔, 𝑣) ∈ 𝑇𝑔𝐺, then left
translation 𝐿ℎ sends these points (using the induced map 𝑑𝐿ℎ at 𝑔) to (ℎ𝑔, 𝑢) and (ℎ𝑔, 𝑣), but
the inner product stays the same: ⟨𝑢, 𝑣⟩ℎ𝑔 = ⟨𝑢, 𝑣⟩ = ⟨𝑢, 𝑣⟩𝑔 . Thus, all objects derived from the
Riemannian metric (norm, distance, etc.) are invariant under left translations.

3.3 The induced topology
We shall state, without proof, the following comforting fact:

Proposition 4. The topology induced on 𝐺0 by the metric 𝑑𝐺 is the topology 𝐺0 gets as a subspace
of 𝐺.

3.4 Example computation of distance
Once again, let 𝐺 = SO(2, ℝ), which has Lie algebra g = {𝐴(𝛼) ∈ GL(2, ℝ) ∣ 𝛼 ∈ ℝ}. On g we
choose a rescaled standard inner product (i.e. considering g ⊂ ℝ

4)

⟨(

0 𝛼

−𝛼 0)
,
(

0 𝛽

−𝛽 0)⟩
∶= 𝛼𝛽

A path between 𝑅(0) = 𝐼 and 𝑅(𝛼) is given by 𝜙 ∶ 𝑡 ↦ 𝑅(𝑡𝛼) for 𝑡 ∈ [0, 1]. Then, the length of
this path is

𝐿(𝜙) =
∫

1

0

‖𝐷𝜙(𝑡)‖𝜙(𝑡)𝑑𝑡, ‖𝐷𝜙(𝑡)‖𝜙(𝑡) =

√

⟨𝜙(𝑡)
−1
𝜙
′
(𝑡), 𝜙(𝑡)

−1
𝜙
′
(𝑡)⟩.

To carry on the calculation, we recall our earlier formula for deriving the path 𝑡 ↦ exp(𝑡𝐴(𝛼))

and calculate

𝜙
′
(𝑡) =

𝑑

𝑑𝑡

exp(𝑡𝐴(𝛼)) = 𝐴(𝛼) exp(𝑡𝐴(𝛼)) = 𝐴(𝛼)𝑅(𝑡𝛼), = 𝑅(𝑡𝛼)𝐴(𝛼)

such that
‖𝐷𝜙(𝑡)‖𝜙(𝑡) =

√

⟨𝐴(𝛼), 𝐴(𝛼)⟩ = |𝛼|, and 𝐿(𝜙) = |𝛼|

as expected. This value is an upper bound for the distance 𝑑𝐺(𝑅(0), 𝑅(𝛼)) = inf𝜙 𝐿(𝜙), but we
would have to work a little bit more to actually calculate the distance (geometrically, we might
expect it to be proportional to min{|𝛽| ∣ ∃𝑘 ∶ 𝛽 = 𝛼 + 2𝜋𝑖𝑘}).
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