
Geodesic flow

D. Blättler, A. Furlong, A. Sandamirskaya

November 2023

1 Recap: The Algebra-Geometry dictionary for H

The geodesic flow gt : T1H → T1H is the movement by a distance t along the oriented
geodesic tangent to a given vector v: for v ∈ TzH, ϕ(t) := γ̇(t) ∈ Tγ(z)H for γ the unit
speed geodesic with γ̇(0) = v. Noticing the special case at point (i, i) of the tangent

bundle, we deduce that gt =

(
et/2 0
0 e−t/2

)
Proof. For v = i, ϕ(t) is the unit vector on iR+ facing upwards at distance t from

i. d(i, eit) =
∫ et

1
1
ydy = t. ϕt(v) = etv. Furthermore gt(i, v) = (eti, etv) so they

correspond. Given ξ ∈ H arbitrary, there is gξ ∈ PSL2(R) such that ξ = vgξ. Since
gzξ is an isometry, ϕt(ξ) = ϕt(vg

zξ) = ϕt(v)g
zξ = gtvgzξ = gtξ

The horocycle flow hs : T1H → T1H is the movement by a distance s along the
horocycle perpendicular to a given vector v, with v pointing inward. Under the
identification of T1H ∼= PSL2(R), the horocycle flow merely corresponds to right

translations:g → g · u(t) where u(t) =

(
1 t
0 1

)
∀t ∈ R.

Proof. It suffices to consider the case where z = i and ξ is the unit tangent vector at
z pointing in the direction of the imaginary axis. hs(z, ξ) = (i + s, ξ), so hs(z, ξ) =
u(s) · (z, ξ)

Geometrically, the horocycle flow through a point (x, y) is the set of points (u, v) such
that d(gt(x, y), gt(u, v)) → 0
These do indeed preserve the measure on T1H.
Since these flows are geometric, they commute with the action of H. And they are
connected to each other through the relations gthsg−t = hs·exp(−t). Notice also that
hs ◦ ht = hs+t and gs ◦ gt = gs+t.
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2 Introduction to Ergodic theory

Measure-preserving maps

Remember:
For measure spaces (X,B, µ) and (Y,C , ν) a map
ϕ : X → Y is measurable if ϕ−1(B) ∈ B for all A ∈ C .

Definition (measure-preserving):
We call ϕ a measure-preserving map if ϕ is measurable and µ(ϕ−1(B)) = ν(B) for all
B ∈ C .

Examples:

• The function f : R → R, x 7→ x+ 1 preserves Lebesgue measure.

Proof: It is sufficient to check the condition on intervals.
So let B = [a, b) ⊆ R. Then

mR(f
−1(B)) = mR(f

−1([a, b)))

= mR([a− 1, b− 1)) = (b− 1)− (a− 1)

= b− a = mR([a, b)) = mR(B) □

f

a

b

a−1 b−1

• The function g : R → R, x 7→ 2x does not preserve Lebesgue measure.

Proof: As a counterexample we choose
B = [0, 1] ⊆ R. Then

mR(g
−1(B)) = mR(g

−1([0, 1]))

= mR([0,
1
2 ]) =

1
2

̸= 1 = mR([0, 1]) = mR(B) □

g

a

b

a
2

b
2
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• The circle-rotation map

We observe the set T = R/Z with the metric d(r+ Z, s+ Z) = min
m∈Z

|r− s+m|.

The function
Rα : T → T, x 7→ x+ α (mod 1)
preserves Lebesgue measure.

Proof: It is sufficient to check the condition on intervals.

So let B = [a, b) ⊆ R. Then

mT(R
−1
α (B)) = mT(R

−1
α ([a, b)))

= mT([min(a− α, 0), b− α) ∪ [a− α+ 1,max(b− α+ 1, 1)))

= ((b− α)−min(a− α, 0))− (max(b− α+ 1, 1)− (a− α+ 1))

= b− a = mR([a, b)) = mR(B) □

T

0

1

4

1

2

3

4

1

1

0

Rα

a

b

b−α a−α+1
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• The circle-doubling map

The function T2 : T → T, t 7→ 2t (mod 1)
preserves Lebesgue measure.

Proof: It is sufficient to check the condition on intervals.
So let B = [a, b) ⊆ [0, 1). Then

mT(T
−1
2 (B)) = mT(T

−1
2 ([a, b]))

= mT([
a
2 ,

b
2 ) ∪ [ 12 + a

2 ,
1
2 + b

2 ))

= mT([
a
2 ,

b
2 )) +mT([

1
2 + a

2 ,
1
2 + b

2 ))

= ( b2 − a
2 ) + (( 12 + b

2 )− ( 12 + a
2 ))

= 1
2 (b− a) + 1

2 (b− a) = b− a

= mT([a, b)) = mT(B) □

1

1

0

T2

a

b

a
2

b
2

1
2+

a
2

1
2+

b
2

• The left shift map on {0, 1}N

We define the measure µ( 1
2 ,

1
2 )
(0) = µ( 1

2 ,
1
2 )
(1) =

1

2
on the set {0, 1}.

Now let X = {0, 1}N with the infinite product measure µ =
∏

N µ( 1
2 ,

1
2 )
.

This can be thought of as a model for outcomes of infinitely repeated tosses
of a fair coin.

Then the function σ : X → X, (x0, x1, ...) 7→ (x1, x2, ...) preserves the mea-
sure µ.
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Proof: We will show that (X,µ, σ) is measurably isomorphic to (T,mT, T2).

We define the measure-preserving map ϕ : X → T as

ϕ(x0, x1, ...) =
∞∑

n=0

xn

2n+1

Then we will show that for any x = (x0, x1, ...) ∈ X : T2(ϕ(x)) = ϕ(σ(x)):

T2(ϕ(x)) = T2(ϕ(x0, x1, ...)) = T2

( ∞∑
n=0

xn

2n+1

)
= 2

∞∑
n=0

xn

2n+1
(mod 1)

=
∞∑

n=0

xn

2n
(mod 1) = x0︸︷︷︸

∈{0,1}

+
∞∑

n=1

xn

2n
(mod 1) =

∞∑
n=0

xn+1

2n+1
(mod 1)

= ϕ(x1, x2, ...) = ϕ(σ(x0, x1, ...)) = ϕ(σ(x))

We have already shown that T2 is measure-preserving on T with the measure
mT, thus σ is measure-preserving on X with the measure µ. □

Poincaré Recurrence

Theorem: Let T : X → X be measure-preserving on a probability space (X,B, µ)
and E ⊆ X be measurable.

Then for almost every x ∈ E, x returns to E infinitely often. That means

∃F ⊆ E measurable with µ(F ) = µ(E) such that for any x ∈ F
there exist 0 < n1 < n2 < ... with Tni(x) ∈ E for all i ≥ 1.

X

E

x

T (x)

T 2(x)

T 3(x)
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Proof: Let B = {x ∈ E | Tn(x) /∈ E for any n ≥ 1} be the elements of E which never
return to E. This set can be rewritten as

B =
{
x ∈ E ∧ T (x) /∈ E ∧ T 2(x) /∈ E ∧ ...

}
= E ∪

{
x ∈ X | T 2(x) /∈ E

}
∪
{
x ∈ X | T 2(x) /∈ E

}
∪ ...

= E ∪ T−1(X \ E) ∪ T−2(X \ E) ∪ ...

Because E is measurable and T−n(X \ E) is measurable for any n ≥ 1,
B is also measurable as a union of measurable sets.

For any n ≥ 1 we can write

T−n(B) = T−n
(
E ∪ T−1(X \ E) ∪ T−2(X \ E) ∪ ...

)
= T−n(E) ∪ T−n−1(X \ E) ∪ T−n−2(X \ E) ∪ ...

Thus the sets B, T−1(B), T−2(B), ... must be disjoint.

As a consequence, we get that

∞ > µ(X) ≥ µ
(
B ∪ T−1(B) ∪ T−2(B) ∪ ...

)
= µ(B) + µ(T−1(B)) + µ(T−2(B)) + ...

= µ(B) + µ(B) + µ(B) + ... because T is measure-preserving

Hence we get µ(B) = 0.

So there exists the set F1 = E \ B with µ(F1) = µ(E) for which every point in
F1 returns to E at least once.

Iteratively repeating the same construction with the maps T 2, T 3, ... we get sets
F2, F3, ... where for any n ≥ 1, we have Fn+1 ⊆ Fn, µ(Fn) = µ(E) and for which
each element of Fn returns to E at least once under iteration of the function Tn.

We define the set F =
⋂
n≥1

Fn ⊆ E.

Then µ(F ) = µ(E) and every element of F returns to E infinitely
often. So we have proven the theorem. □
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Note: As seen in the proof, it is necessary that µ(X) < ∞.
The function f : R → R, x 7→ x + 1 seen in our first example of measure-preserving
maps satisfies all other requirements of the theorem but clearly the theorem doesn’t
hold for it.

R
x f(x) f 2(x) f 3(x) f 4(x)

Ergodicity

Definition (ergodic):
A measure-preserving transformation T : X → X on a probability space (X,B, µ) is
ergodic if for any B ∈ B:

T−1(B) = B =⇒ µ(B) = 0 or µ(B) = 1

Proposition: The following are equivalent properties for a measure-preserving trans-
formation T of (X,B, µ):

(1) T is ergodic.

(2) For any B ∈ B, µ(T−1(B)△B) = 0 implies that µ(B) = 0 or µ(B) = 1.

(3) For A ∈ B, µ(A) > 0 implies that µ

( ∞⋃
n=1

T−1(A)

)
= 1.

(4) For A,B ∈ B, µ(A)µ(B) > 0 implies that there exists n ≥ 1 with
µ(T−n(A) ∩B) > 0.

(5) For f : X → C measurable, f ◦ T = f almost everywhere implies that
f is equal to a constant almost everywhere.
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Proof: We will only prove the equivalence between (1), (2) and (5).

(1) =⇒ (2): Assume T is ergodic.

Choose B ∈ B such that µ
(
T−1△B

)
= 0.

We will construct a T -invariant set with the same measure as B.

So let C = lim sup
n→∞

T−n(B) =
∞⋂

N=0

∞⋃
n=N

T−n(B). Then for any N ≥ 0,

B△
∞⋃

n=N

T−n(B) =

(
B \

∞⋃
n=N

T−n(B)

)
∪
(( ∞⋃

n=N

T−n(B)

)
\B

)
⊆

( ∞⋃
n=N

B \ T−n(B)

)
∪
( ∞⋃

n=N

T−n(B) \B
)

=
∞⋃

n=N

(B \ T−n(B) ∪ T−n(B) \B) =
∞⋃

n=N

B△T−n(B)

So for every n ≥ 1,

µ (B△T−n(B)) ≤ µ

(
n−1⋃
i=0

T−i(B)△T−(i+1)(B)

)
= µ

(
n−1⋃
i=0

T−i
(
B△T−1(B)

))
≤

n−1∑
i=0

µ
(
T−i

(
B△T−1(B)

))
=

n−1∑
i=0

µ
(
B△T−1(B)

)
= n · 0 = 0

Let CN =
∞⋃

n=N

T−n(B)

Then C0 ⊇ C1 ⊇ ... and as shown µ(CN△B) = 0 for every N ≥ 0.
µ(C△B) = 0 which implies that µ(C) = µ(B).

Moreover, T−1(C) = T−1

( ∞⋂
N=0

∞⋃
n=N

T−n(B)

)
=

∞⋂
N=0

∞⋃
n=N

T−(n+1)(B)

=
∞⋂

N=0

∞⋃
n=N+1

T−n(B) = 0

Thus by ergodicity, we know that µ(C) = 0 or 1 and thus µ(B) = 0 or 1. □
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(2) =⇒ (3):

Let f : X → R with f ◦ T = f almost everywhere. We define

Ak
n =

[
k
n ,

k+1
n

]
and Bk

n = f−1(Ak
n) =

{
x ∈ X : f(x) ∈ Ak

n

}
Then we see that

T−1(Bk
m) = T−1 ◦ f−1(Ak

n) = (f ◦ T )−1(Ak
n)

which is equal to f(Ak
n) = Bk

n almost everywhere as f ◦ T = f almost everywhere.

Thus we can use (2) to get that µ(Bk
n) = 0 or 1. Because (X,B, µ) is a proba-

bility space and all sets Bk
n are disjoint for a fixed n, we get that

1 = µ(X) = µ

( ⋃
k∈Z

Bk
n

)
=

∑
k∈Z

µ(Bk
n)

This is only the case if for each n there exists exactly one k with µ(Bk
n) = 1. Thus

we get the sequence (kn)n ∈ N with µ(Bkn
n = 1 for every n.

Because lim
n→∞

µ(Ak
n) = 0 there is only one number c ∈ lim sup

n→∞
Akn

n and thus

µ(f−1(c)) = 1 =⇒ f(x) = c almost everywhere. □

(3) =⇒ (1):

Let B ∈ B such that T−1(B) = B

The function χB : X → {0, 1} is T -invariant because B itself is T -invariant.

Thus we can use (3) and get that χB =constant almost everywhere. As χB maps
onto the set {0, 1}, said constant is either 0 or 1. With this we can calculate the
measure of B:

µ(B) =
∫
X

χBdµ =


∫
X

0dµ = 0 or

∫
X

1dµ = µ(X) = 1 □
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Associated Unitary Operators and Unitary representations

In general, consider a Hilbert space H and a continuous linear operator U : H → H.
Then the relation ⟨Uf, g⟩ = ⟨f, U∗g⟩ defines another continuous linear operator
U∗ : H → H called the adjoint of U . Note that U is an isometry iff U∗U = idH and
UU∗ = ProjIm(U .
We call U unitary iff it is invertible and U−1 = U∗, this is equivalent to ∀f, g ∈ H :
⟨Uf,Ug⟩ = ⟨f, g⟩.

Let T be a measure preserving map and recall that L2
µ is a Hilbert space. Define the

associated operator or Koopman operator of T by:

UT : L2
µ → L2

µ, f 7→ f ◦ T

It turns out that UT is actually a unitary operator, as the following quick calculations
shows: ⟨UT f, UT g⟩ =

∫
f ◦ T · g ◦ Tdµ =

∫
f · gdµ = ⟨f, g⟩

Where we used that µ is T-invariant, so performing the substitution x 7→ T (x) can-
cels out the change to the push-out measure Tµ. Now we can see some equivalent
statements to ergodicity.

Proposition: T is ergodic ⇔ 1 is an eigenvalue of UT with multiplicity one. Thus
we say that ergodicity is a unitary property

Proof. Recall that: T ergodic ⇔ ∀f : X → C µ-meas. UT f = f ◦ T = f a.e. ⇒
f is constant a.e.
Note that f ≡ 1 a.e. is an eigenfuction with eigenvalue 1 of UT . Let T be ergodic. If
we have another eigenfunction g for the eigenvalue 1, then since T is ergodic g must
be constant a.e. and is in particular a multiple of f a.e.
Let 1 be an eigenvalue with multiplicity one of UT . Again, all other functions which
satisfy UT g = g ◦ T = g must be a multiple of f ≡ 1 a.e. and are hence constant a.e.,
so T is ergodic.

The next equivalent formulation requires the theory of representations. We will start
with a few definitions.

A representation of a group G onto a vector space V is a group homomor-
phism ρ : G → GL(V ). Let ⟨., .⟩ be a scalar product on V. We say that ρ is unitary
if ∀g ∈ G : ρ(g) is unitary.
In our case G is a metric group, and V=H is a Hilbert space, and we impose the
additional requirement that for a fixed v ∈ H the map G → H, g 7→ g(v) must
be continuous with respect to the metric on G, and the induced metric by the scalar
product on H.
We define a character of a representation ρ to be the map χρ : G → C, g 7→
tr(ρ(g)).

Example: An example of a representation is the regular representation. Let
G be a group and V = {f : G → C} the vector space of all linear functionals, also
denoted by V̂ . Note the characters are elements of V. The regular representation is
given by:

ρreg(g)f : h 7→ f(g−1h)

It is easy to check that this is indeed a representation.
We can also consider X = Γ\G and µ the Haar-measure. Then the action of G onto
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L2
µ(X) given by f 7→ f ◦ g−1 is a unitary representation.

Example: A even simpler example of a unitary representation is matrix multipli-
cation. Let G = U(n, C) be the group of all n× n unitary matrices, and let H = Cn.
Then the group action of matrix multiplication is a unitary representation.

Theorem: Let X be a compact abelian group, and T : X → X a continuous sur-
jective homomorphism. Then T is ergodic with respect to the Haar measure mX iff
for a n > 0 and a character χ : X → C the equality χ ◦ Tn = χ implies that χ is the
trivial character, i.e. χ ≡ 1.

Proof. Assume there exists a non-trivial character χ with χ(Tn(x)) = χ(x)∀x ∈ X
for some n > 0, chosen to be minimal with this property. Define the function:

f(x) = χ(x) + χ(T (x)) + · · ·+ χ(Tn−1(x)

Observe that it is invariant under T and non-constant, since it is a sum of distinct,
non-trivial characters. Thus, T is not ergodic.

Conversely, assume that only the trivial character is invariant under a non-zero
power of T, and let f ∈ L2

µ(X) be a T-invariant function. We want to show that
f is constant. Consider the Fourier expansion f =

∑
χcharacter cχχ, where ||f ||22 =∑

χ character |cχ|2 < ∞.
Since f is invariant under T, it follows that cχ = cχ◦Tn ∀n ∈ N. Hence either
cχ = 0 or there are only finitely many distinct characters among the χ ◦ T i other-
wise

∑
χcharacter |cχ|2 would be infinite. This means there exist integers p¿q such that

χ ◦ T p = χ ◦ T q. Since the map χ 7→ χ ◦ T is injective (due to T being sujrective), it
follows that χ is invariant under T p−q. By hypothesis, χ is trivial. This means that
the Fourier expansion of f is a constant, so f is a constant a.e.. Hence T is ergodic.

In particular, we can apply this theorem together with the previous Proposition to
the torus:
Corollary: Let A ∈ GLd(Z) be an invertible integer matrix. A induces a surjective
homomorphism Rd/Zd → Rd/Zd given by matrix multiplication, which preserves the
Lebesgue measure. The transformation TA is ergodic iff no eigenvalue of A is a root
of unity.

Actions on the space

Let Γ be a discrete subgroup of SL2(R). We define the geodesic and horocycle flow
on the space X = Γ\SL2(R) as follows:

geodesic flow: Rat
(x) = x

[
e

t
2 0

0 e
−t
2

]
horocycle flow: Rut

(x) = x

[
1 s
0 1

]

This motivates us to consider the setsA =

{[
e

t
2 0

0 e
−t
2

]
|t ∈ R

}
and U =

{[
1 s
0 1

]
|s ∈ R

}
more closely.
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Proposition: Every g ∈ SL2(R) is conjugate to an element of ±A, ±U or SO2R.
This is known as Iwasawa decomposition, and you can think of it as just Cartesian
coordinates over H.

Proof. We consider three cases:

• If g is diagonalisable over R. Then we can diagonalise it and get that g is

conjugate to a matrix of the form

[
d1 0
0 d2

]
where d2 = 1

d1
∈ R since the

determinant of g is 1. Define t such that |d1| = e
−t
2 . We get that g is conjugate

to an element of A or -A and call such a g hyperbolic.

• If g if diagonalisable over C. We again diagonalise it and get the eigenvalues
λ and λ−1, their absolute value is 1, hence λ = eiθ for some θ ∈ R. This
corresponds to a rotatory matrix which all lie in SO2R. We call g elliptic.

• If g is not diagonalisable, then it only has one eigenvalue and its Jordan Normal

Form is

[
1 s
0 1

]
which is an element of U. We call this kind of g parabolic.

The considered all possible cases and this concludes the proof.

This Proposition is useful because of the following result:

Proposition: Let Γ be a discrete subgroup of a closed linear group G. Let g1, g2, h ∈
G such that g2 = hg1h

−1. Then Rg2 = RhRg1R
−1
h holds as maps on Γ\G. In par-

ticular, if Γ is a lattice, then the measure preserving systems (X,BX ,mX , Rg1) and
(X,BX ,mX , Rg2) are conjugate, i.e. measurably isomorphic.

Proof. The first part immediately follows from the definition of Rg. If Γ is a lattice,
then the map Rh preserves the finite measure mX which proves the second part of
the statement.

In the next section we want to prove the Ergodic theorem which states the following:

Theorem: (Ergodic Theorem) Let Γ be a subgroup of SL2(R) and a lattice.
Define X = Γ\SL2(R). Let g ∈ SL2(R) be an element not conjugate to SO2(R).
Then Rg acts ergodically on (X,BX ,mX).
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3 Putting things together

There are a couple ways to show that the geodesic flow is ergodic. Behind each proof
lies the basic idea of contraction.

Lemma: PSL2(R) is generated by the matrices in ⟨N+, A,N−⟩. Recall that A is
just the set of matrices representing the geodesic flow. It turns out this decomposition
of the space is just Cartesian coordinates (N corresponds to the x-axis, and A the y-
axis). We want to show the geodesic flow is ergodic for every quotient of H by a lattice
H/Γ, because we need a finite measure to talk about ergodicity. Note: generally this
space is not compact.
It turns out that being ergodic for a topological group is quite a weak property, since
we demand invariance under the whole group: X is G-ergodic if µ({x : gx = x, ∀g ∈
G}) ∈ {0, 1}. Our equivalence shown above still applies, so it is equivalent to proving
that any A-invariant function f is constant almost everywhere. It will turn out that
A-invariant =⇒ PSL2(R)-invariant, and so if f is in L2, then it must be constant,
therefore ergodic. We need the following contraction lemma:

Lemma: For ga ∈ A and h ∈ N+ if a < 1, in N− otherwise, we have that
limn→∞ gnahg

−n
a = e. Essentially, when we conjugate by ga, we contract h.

Proof. We prove this by just computing the relevant matrices.[
a 0
0 a−1

]
·
[
1 x
0 1

]
·
[
a 0
0 a−1

]−1

=

[
1 a2x
0 1

]
So, [

a 0
0 a−1

]n
·
[
1 x
0 1

]
·
[
a 0
0 a−1

]−n

=

[
1 a2nx
0 1

]
for a < 1 so we see this does indeed tend to 0. If instead a > 1, then by taking the
transpose of our h, so it is now in N−, we get[

1 0
a−2nx 1

]
So we have proved the lemma. Geometrically this is just saying that we can always
find some element ga that will contract h along the horocycle.

We can then use Mautner’s lemma, which translates this result in terms of represen-
tations.

Mautner’s lemma: Consider a unitary representation on PSL2(R)/Γ, and sup-
pose we have g, h ∈ SL2(R) as above, i.e. limn→∞ gnhg−n = 1. Then all f ∈
L2(PSL2(R)/Γ) invariant under the action of g are also invariant under the action of
h.

Proof. We use the associated operators given by the representation: ||Thf − f || =
||ThTg−nf − Tg−nf || = ||TgnThTg−nf − TgnTg−nf || and so

lim
n→∞

||TgnThTg−nf − f || ≤ || lim
n→∞

TgnThTg−nf − f || = 0

. Therefore f is invariant under h.
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We now have a 2-line proof of ergodicity:
Suppose Taf = f for all a ∈ A. Then by the first lemma we have for all h ∈ N+∪N−

we have a ga that contracts h; this allows us to apply Mautner, and we have that
for all f invariant under g is invariant under h. But since PSL2(R) is generated by
these matrices, we must have that f is invariant under any matrix M ∈ PSL2(R):
TMf = f . So f ∈ L2(PSL2(R)/Γ) invariant under PSL2(R), it must be essentially
constant, which is equivalent to saying A is ergodic.

This same idea, with a small twist can be used to prove the ergodicity of the horocycle
flow (N+).

Proof 2: Hopf’s original idea

This was the first proof of ergodicity of the geodesic flow. It uses the Pointwise
Ergodic Theorem, which just says that time averages = space averages, and which
is discussed in the appendix. Hopf’s proof is all about making the following idea
rigorous:
Given any x ∈ H/Γ, u ∈ N we want to show that f(x) = f(xu). By A-invariance,
f(xu) = f(xuan) = f(xana

−1
n uan). By the contraction principle, the RHS tends

to f(xan) = f(x) as required. The problem with this is the convergence: f is only
assumed to be measurable, not continuous, and even continuity isn’t enough. Remem-
ber from Analysis I that the image of a Cauchy sequence is Cauchy if f is uniformly
continuous. We have no such restrictions. So we will restrict to compact sets of
arbitrarily large size and use measure theory magic, also known as Luzin’s theorem.
Luzin’s theorem states that given f : X → Y with µ(X) = 1, for all ϵ > 0 there exists
K compact with µ(K) = 1− ϵ and f restricted to K is continuous, and so uniformly
continuous.

Proof. Let f : X → R be a measurable gt-invariant function, for non-zero t. By
Lusin’s theorem, for any ϵ > 0 there exists a compact set K such that m(K) > 1− ϵ

and f |K is continuous. Define B := {x : lim
n→∞

1
n

∑n−1
i=0 χK(gltx) > 1

2}. Intuitively

this set should be quite large if everything is ergodic, so we want to show it has
large measure. The limit exists almost everywhere and belongs in [0, 1] and

∫
h :=∫

lim
n→∞

1
n

∑n−1
i=0 χK(gltx) = m(K) ≥ 1− ϵ by the pointwise Ergodic Theorem. So

1− ϵ ≤
∫
B

h+

∫
X/B

h ≤ m(K) +
1

2
m(X/K) =

1

2
m(B) +

1

2

This implies m(B) ≥ 1− 2ϵ.

We now look to apply the contraction. Suppose x ∈ B, y = hs · x ∈ B for some
s. Then f(x) = f(gltx), f(y) = f(glty) for all l ≥ 1 (by gt-invariance), and so
dX(f(gltx), f(g

l
ty)) = dX(xa−l

t , x · hsa−l
t ) ≤ dPSL2R(I2, a

l
th

sa−l
t ) →l→0 0. Since x, y

spend more than half their time in the set K (by definition of Y ), there exists a
common sequence ln such that the orbits of x, y become arbitrarily close, and in K.
By compactness, f |K is uniformly continuous, so f(glnt x) and f(glnt y) converge along
a subsequence, which gives us that f(x) = f(hsx) whenever both arguments are in
B. We now build a sequence of bigger sets; for ϵ1 < ϵ, there exists compact K1 ⊂ X
such that m(K1) > 1 − ϵ1 on which f is continuous. Wlog K ⊂ K1. We can define
B1 as before, with B ⊂ B1. ϵ arbitrary =⇒ ∃A,m(A) = 1,∀x, y = hsx ∈ A we have
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f(x) = f(y).

So if f not constant a.e., we have two disjoint intervals I1, I2 such that Ci = {h ∈
PSL2(R)|f(Γh) ∈ Ii} has measure in (0, 1) =⇒ ∃g : m(C1 ∩ C2g) > 0 =⇒
C1 ∩ C2 ∩ {h : Γh ∈ Xg} ≠ ∅. Contradiction since I1 ∋ f(Γh) = f(Γhg−1) ∈ I2.

Right at the end we used the following small lemma: if for two Borel sets B1, B2:
µ(B1)µ(B2) > 0, then {g : µ(gB1 ∩B2) > 0} is open and non-empty. A full proof can
be found in 8.3 of Einsiedler and Ward’s book.

Proof using the full power of representations, Chapter 11

Lemma: Let X be a locally compact metric space, and let µ be a probability measure
on X. Assume that G is a metrizable group that acts continuously on X (see p. 229)
and preserves the measure µ. Then the action of G on L2

µ(X) defined by g : f → f◦g−1

is a unitary representation.

Proof. Since g preserves µ we know this is unitary. The continuity requirement was
proved above.

Proposition 11.18: Let H be a Hilbert space carrying a unitary representation of a
metric group G. Suppose that v0 ∈ H is fixed by some subgroup L ⊂ G. Then v0 is
also fixed by any other element h ∈ G.
Using representations gives a less geometric proof than the original. If f ∈ L2 is Rg-
invariant, then by Proposition 11.18 it is also RU−

g
and RU+ -invariant. In the case

g = at ∈ G = SL2(R), the subgroups U generate all of SL2(R), so the function f
is SL2(R)-invariant and therefore equal to a constant almost everywhere. Note that
here the invariance is always understood in L2.

Corollary 11.19. Let Γ ≤ G be a lattice in a closed linear group and let X be the
homogeneous space Γ\G. If g ∈ G has the property that G is generated by U+ ∪U−

then Rg is ergodic with respect to the Haar measure.

Proof. Prop 18: Without loss of generality we may assume that ||v0|| = 1. We define
the auxiliary function (also called a matrix coefficient, in analogy with the Gram
matrix) p(h) = ⟨h(v0), v0⟩ for h ∈ G. Notice that by the continuity requirement in
the definition of a unitary representation, p(h) depends continuously on h. Moreover,
for g1, g2 ∈ L and h ∈ G,

p(g1hg2) = ⟨g1h(g2(v0)), v0⟩ = ⟨h(v0), g−1
1 v0⟩ = p(h)

(since v0 is fixed by g1, g2 in L). Now h ∈ G acts unitarily, so ||h(v0)|| = 1. We
claim that p(h) = 1 implies h(v0) = v0. This may be seen as a consequence of
the fact that equality in the Cauchy–Schwartz inequality |⟨v, w⟩| ≤ ||v|| · ||w|| only
occurs if v and w are linearly dependent. Now let h ∈ G be as in the statement of
the proposition, and choose sequences gn → e (the identity in G), ln, l

′
n ∈ L with

lngnl
′
n → h. Then, on the one hand, by the equation (inner product up above) we

have p(lngnl
′
n) = p(gn) → p(e) = ||v0||2 = 1, while p(lngnl

′
n) → p(h) by continuity. It

follows that p(h) = 1, and so h(v0) = v0 by the claim above
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4 Appendix: Pointwise Ergodic Theorem

Following on from Poincarre recurrence, we have that the space of L2 functions can be
decomposed orhtogonally into the space of functions that are T -invariant (f = f ◦ T )
which we will call Hinv and the closure of the space of functions that are cobound-
aries Herg = {f : ∃g, f = g − g ◦ T}. One can easily show, just using the properties
of the inner product, that L2 = Hinv⊕Herg. This gives us the mean ergodic theorem:

This states that taking the limit of averages converges in L2-norm to the projection
onto the invariant subspace: limN→∞

1
N

∑N
n=1 U

n
T f = finv. The proof is straightfor-

ward. We use the decomposition up above, the invariant bit is invariant which is what
we want, so we only need to show that ferg disappears. Since we are doing all this in
norm, we can ignore the fact that we took the closure and just assume ferg = g−g◦T .
This gives a telescoping sum, which tends to 0.

If we now want to prove this in the pointwise case, it becomes a lot more involved,
because we now cannot ignore the closure. So we have to use a technical lemma called
the maximal inequality. A full proof can be found in Section 2 of Einsiedler’s book.
Supposing we now have the theorem up above for pointwise convergence, you may be
wondering where the integral comes from. Well it turns out that finv =

∫
f when the

system is ergodic, and that comes from the fact that invariant functions are constant
almost everywhere. This is all we need.

16


	Recap: The Algebra-Geometry dictionary for H
	Introduction to Ergodic theory
	Putting things together
	Appendix: Pointwise Ergodic Theorem

