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1 Mixing transformations

Strong-mixing

Note: For a measure preserving system (X,B, µ, T ) we have that

T is ergodic ⇐⇒ lim
N→∞

1
N

N−1∑
n=0

µ(A ∩ T−nB) = µ(A)µ(B) ∀A,B ∈ B.

This describes a sort of mixing property of a transformation. There are even stronger
notions of mixing, which we will take a look at now:

Definition (strong-mixing):
A measure-preserving system (X,B, µ, T ) is called strong-mixing if

lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B) ∀A,B ∈ B

We can see that strong-mixing implies ergodicity but ergodicity does not imply strong-
mixing.

Examples:

• Baker’s map
The map S : [0, 1]2 → [0, 1]2 given by (x, y) 7→

(
2x− ⌊2x⌋, 1

2 (y + ⌊2x⌋)
)
is

strong-mixing.

This transformation can be thought of as cutting the square in half veritcally
and linearly mapping the left side to the bottom half of the image and the right
side to the top half of the image.

S S S

[0, 1]2 S([0, 1]2) S2([0, 1]2) S3([0, 1]2)

• Circle-rotation
The map Rα : T → T, x 7→ x+α (mod 1) is ergodic if and only if α ∈ R \Q but
is not strong-mixing for any α.

Proof: If α ∈ Q, then Rα is not ergodic and thus not strong-mixing. So
we assume α is irrational. We can approximate any irrational number through
a sequence of ration approximations. So we know that ∃n1, n2, ... ∈ N such that
lim
j→∞

αnj (mod 1) = 0. In fact the denominators of the rational approximations

of α suffice. Now taking A = B =
[
0, 1

2

]
we get that

lim
j→∞

µ
(
A ∩ T

−nj
α

)
= 1

2 ̸= 1
4 = µ(A)µ(B),

so the circle-rotation is not strong-mixing. □

2



There is an even stronger kind of mixing called k-fold mixing which we will introduce:

Definition (k-fold mixing):
A measure-preserving system (X,B, µ, T ) is called k-fold mixing if

µ(A0 ∩ T−n1A1 ∩ T−n2A2 ∩ ... ∩ T−nkAk) →
k∏

i=0

µ(Ai))

as n1, n2 − n1, n3 − n2, ...nk − nk−1 → ∞
for any sets A0, A1, ..., Ak ∈ B.

Thus strong-mixing can be thought of as being 1-fold mixing. One of the outstanding
open problems in classical ergodic theory is that it is not known if strong-mixing
implies k-fold mixing for every k ≥ 1.

Weak-mixing

It is actually more interesting looking at the following, slightly weaker property.

Definition (weak-mixing):
A measure-preserving system (X,B, µ, T ) is called weak-mixing if

lim
N→∞

1
N

N−1∑
n=0

|µ(A ∩ T−nB)− µ(A)µ(B)| = 0 ∀A,B ∈ B

If we define an = µ(A ∩ T−nB) − µ(A)µ(B), we can rewrite our three main mix-
ing properties:

• Ergodicity: 1
N

N−1∑
n=0

an → 0

• Weak-mixing: 1
N

N−1∑
n=0

|an| → 0

• Strong-mixing: an → 0

We can clearly see, that strong-mixing =⇒ weak-mixing =⇒ ergodicity.
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Examples:

• Finding a transformation that is weak-mixing but strong-mixing is quite diffi-
cult. To imagine how such a transformation might work, imagine the mixing
sequence (an)n∈N = (1, 1

2 , 1,
1
3 ,

1
3 , 1,

1
4 ,

1
4 ,

1
4 , 1, ...), then this does not converge

to zero but it’s Cesàro sum limits to zero. Such a map would be weak-mixing
but not strong-mixing. To see examples, see the paper ”Mixing Properties of
Substitutions” [Dekking, Keane], or look at the Chacon transformation.

• The circle-rotation map Rα is not weak-mixing. Thus for α ∈ R \ Q, it is
an example of an ergodic, but not weak-mixing map. To prove that it is not
weak-mixing we will first introduce some equivalencies of weak mixing.

Proposition: The following are equivalent properties for a system (X,B, µ, T ):

(1) T is weak-mixing.

(2) For any ergodic, measure-preserving system (Y,BY , ν, S), the system
(X × Y,B ⊗ BY , µ× ν, T × S) is ergodic.

(3) T × T is ergodic with respect to µ× µ.

(4) The associated operator UT has no non-constant measurable eigenfunctions.

Proof: (1) =⇒ (2): So assume (X,B, µ, T ) is weak-mixing amd let (Y,BY , ν, S)
be ergodic.

Choose A1, B1 ∈ B and A2, B2 ∈ BY . We can then calculate

lim
N→∞

1
N

N−1∑
n=0

(µ× ν) (A1 ×A2 ∩ (T × S)−n(B1 ×B2))

= lim
N→∞

1
N

N−1∑
n=0

µ(A1 ∩ T−nB1)ν(A2 ∩ S−nB2)

= lim
N→∞

1
N

N−1∑
n=0

(µ(A1 ∩ T−nB1)− µ(A1)µ(B1) + µ(A1)µ(B1)) ν(A2 ∩ S−nB2)

= lim
N→∞

1
N

N−1∑
n=0

(µ(A1 ∩ T−nB1)− µ(A1)µ(B1)) ν(A2 ∩ S−nB2)

+ lim
N→∞

1
N

N−1∑
n=0

µ(A1)µ(B1)ν(A2 ∩ S−nB2) = S1 + S2
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Because (Y,BY , ν) is a probability space ν(A2 ∩ S−nB2) ≤ 1 and thus |S1| is domi-
nated as follows:

|S1| ≤ lim
N→∞

1
N

N−1∑
n=0

|(µ(A1 ∩ T−nB1)− µ(A1)µ(B1)) ν(A2 ∩ S−nB2)|

≤ lim
N→∞

1
N

N−1∑
n=0

|µ(A1 ∩ T−nB1)− µ(A1)µ(B1)| = 0

Where the last limit is goes to 0 because T is weak-mixing. So we have S1 = 0.

We can calculate S2 using the property that S is ergodic.

S2 = µ(A1)µ(B1) · lim
N→∞

1
N

N−1∑
n=0

ν(A2 ∩ S−nB2)

= µ(A1)µ(B1)ν(A2)ν(B2) = (µ× ν)(A1 ×A2)(µ× ν)(B1 ×B2)

We’ve shown that

lim
N→∞

1
N

N−1∑
n=0

(µ× ν) (A1 ×A2 ∩ (T × S)−n(B1 ×B2))

= (µ× ν)(A1 ×A2)(µ× ν)(B1 ×B2)

meaning that (X × Y,B ⊗ BY , µ× ν, T × S) is ergodic. □

(2) =⇒ (3):

We’ll take (Y={y},BY , ν, S=id) to be the identity on the singleton. Then (Y,BY , ν, S)
is ergodic and thus we can use (2), which gives us that T ×S is ergodic. But because
(T × S) is isomorphic to T , this means that T itself is ergodic.

We can now use (2) again, this time with T as the ergodic system and we get that
T × T is ergodic, which is what we wanted to show. □

(3) =⇒ (4): Let f be a measurable eigenfunction of T , which we will show has
to be constant.

Meaning that f ◦ T = λf for some λ ∈ S1.

(Note that λ ∈ S1 because UT is an isometry of L2
µ)
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We now define the measurable function g as g(x1, x2) = f(x1)f(x2).

We can see that g is T × T -invariant by calculating

(g ◦ T × T )(x1, x2) = g(T (x1), T (x2))

= f(T (x1))f(T (x2))

= λf(x1)λf(x2)

= λλf(x1)f(x2)

= f(x1)f(x2) = g(x1, x2)

Because T × T is ergodic and g is T × T -invariant, we know that g must be con-
stant almost everywhere. Thus f is also constant almost everywhere. □

(4) =⇒ (1):

The Definition of weak-mixing is equivalent to the property that

lim
N→∞

1
N

N−1∑
n=0

|⟨Un
T f, g⟩ − ⟨f, 1⟩⟨1, g⟩| = 0 for any f, g ∈ L2

µ

Using the polarisation identity we get that this is equivalent to

lim
N→∞

1
N

N−1∑
n=0

|⟨Un
T f, f⟩ − ⟨f, 1⟩⟨1, f⟩| = 0 for any f ∈ L2

µ

By subtracting
∫
X
fdµ from f , it is therefore enough to show that

∫
X
fdµ = 0,

then

lim
N→∞

1
N

N−1∑
n=0

|⟨Un
T f, f⟩| = 0

which is equivalent to

lim
N→∞

1
N

N−1∑
n=0

|⟨Un
T f, f⟩|

2
= 0

By the spectral theorem, it is sufficient to show, that for the non-atomic measure
µf on S1, we have

lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∣∫S1 zndµf (z)

∣∣∣∣∣
2

= 0
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We will now calculate this limit.

lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∣∫S1 zndµf (z)

∣∣∣∣∣
2

= lim
N→∞

1
N

N−1∑
n=0

(∫
S1

zndµf (z)

)2

= lim
N→∞

1
N

N−1∑
n=0

(∫
S1

zndµf (z) ·
∫
S1

zndµf (z)

)

= lim
N→∞

1
N

N−1∑
n=0

(∫
S1

zndµf (z) ·
∫
S1

w−ndµf (w)

)

= lim
N→∞

1
N

N−1∑
n=0

( ∫
S1×S1

( z

w

)n
dµ2

f (z, w)

)
(by Fubini)

= lim
N→∞

( ∫
S1×S1

1
N

N−1∑
n=0

( z

w

)n)
dµ2

f (z, w)

Because the measure µf is non-atomic, the diagonal set {(z, z)|z ∈ S1} ⊆ S1 × S1
has zero µ2

f -measure. So we just have to take a look at when z ̸= w for which we have

1

N

N−1∑
n=0

( z

w

)n
=

1

N
·
1− ( z

w )N

1− z
w

→ 0 as N → ∞

So by the dominated convergence theorem, we have that

lim
N→∞

( ∫
S1×S1

1
N

N−1∑
n=0

( z

w

)n)
dµ2

f (z, w) = 0

meaning that indeed T is weak-mixing. □

We can now prove that the circle-rotation Rα is not weak-mixing.

Proof: Define the function f : T× T → R, (x, y) 7→ e2πi(x−y).
We can then calculate that

(f ◦Rα ×Rα)(x, y) = f(Rα(x), Rα(y)) = f(x+ α (mod 1), y + α (mod 1))

= e2πi((x+α (mod 1))−(y+α (mod 1))) = e2πi(x+α−⌊x+α⌋−y+α+⌊y+α⌋)

= e2πi(x−y) · e2πi⌊x+α⌋ · e2πi⌊y+α⌋ = f(x, y) · 1 · 1 = f(x, y)

We see that f is Rα × Rα-invariant. If Rα × Rα were ergodic, f would need to
be constant almost everywhere, but it is not. Thus Rα ×Rα mustn’t be ergodic.

Thus by equivalence (3), the map Rα cannot be weak-mixing. □
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2 The action of SL2(R) is mixing

We have already seen that the action of SL2(R) onto a quotient space is ergodic. In
this section we want to prove that it is furthermore mixing.

Theorem: Let Γ ⩽ SL2(R) be a lattice. Then the action of SL2(R) onto the
quotient space X = Γ\SL2(R) is mixing with respect to the Haar measure.

Two prove this theorem we will need a proposition and a lemma, but first we define
the following things:

Definition: A matrix M ∈ GLk(R) is called unipotent, if ∃k ∈ N such that
(M − Ik)k = 0. This is equivalent to all eigenvalues of M being 1.
We say a sequence of elements vn in a Hilbert space H converges weak* to v, if
∀w ∈ H we have ⟨vn, w⟩ → ⟨v, w⟩ as n → ∞. Note that this correspond to pointwise
convergence in the dual space H∗.
For a group G and a sequence α = (an)n∈N of elements in G, define the set S(α) =

{g ∈ G : e ∈ {a−1
n gan : n ∈ N}}, where e is the identity element in G. One can think

of it in terms of limit points. Id est, as the g ∈ G, for which there exists a subsequence
(ank

)k∈N such that a−1
nk

gank
→ e.

We also say α converges to ∞ if it ”leaves compact subsets”, that is ∀K ⊆ G com-
pact, only finitely for many n ∈ N we have an ∈ K.

Proposition: Let G be a locally compact group, α = (an)n∈N a sequence of elements
in G. Let H be a Hilbert space carrying a unitary representation ρ : G → GL(H. Sup-
pose ∃v ∈ H such that the sequence ρ(an)v ∈ H converges weak* to some v0 ∈ H.
Then ∀g ∈ S(α) : gv0 = v0.

Proof. It suffices to show that ∀g ∈ S(α) : gv0 = v0. Let g ∈ G and (ank
)k∈N such

that limk→∞ a−1
nk

gank
= e. Then by the definition of weak* convergence we have

∀w ∈ H:

⟨gv0, w⟩ = ⟨v0, g−1w⟩ = lim
k→∞

⟨ank
v, g−1w⟩ = lim

k→∞
⟨gank

v, w⟩

In particular also for g = e. Computing the absolute value yields: ∀w ∈ H

|⟨gv0, w⟩ − ⟨v0, w⟩| = lim
k→∞

|⟨gank
v, w⟩ − ⟨v, w⟩| = lim

k→∞
|⟨a−1

nk
gank

v, w⟩ − ⟨a−1
nk

v, w⟩|

≤ lim
k→∞

∥(a−1
nk

gank
)v − v∥∥w∥ = ∥v − v∥∥w∥ = 0

Since this hold for all w ∈ H, it hence follows that gv0 = v0.

To be able to apply this, we need to find the non-trivial element of S(α). The follow-
ing lemma gives them for G = SL2(R):

Lemma: Let α = (gn)n∈N be a sequence of elements in SL2(R) converging to
∞. Then the set S(α) contains a non-trivial unipotent element.

Proof. Consider the map Φ : SL2(R) → GL(Mat2×2(R)) given by Φ(g)v = gvg−1, g ∈
SL2(R), v ∈ Mat2×2(R). This is a proper linear map, thus if gn → ∞ then ∥Φ(g)∥ →
∞. Observe that we have two invariant subspaces under this map, whose direct sum
is the whole space:

RI2, B = {X ∈ Mat2×2(R) : trace(X) = 0}
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Note that actually B = sl2(R), but this is not important here. The group action
is trivial under the first one. Thus, there exists a sequence (vn)n∈N in B such that
∥vn∥ → 0 but ∥Φ(gn)vn∥ = c > 0, ∀n ∈ N, where c is small enough such that the
exponential map is injective on a ball of radius 2c. We apply exp onto the sequence
to get a new sequence hn = exp(vn) → exp(0) = I and gnhng

−1
n → u ̸= I (because

∥Φ(gn)hn∥ = exp(c) ̸= 1). In particular, all the eigenvalues of hn go to 1. Since
eigenvalues are invariant under conjugation, all eigenvalues of gnhng

−1
n also all go to

1, i.e. the eigenvalues of u are all 1. Therefore, u is unipotent and it lies in S(α).

Now we have all the ingredients we need to prove the theorem.

Proof. Let α = (an)n∈N be a sequence of elements in SL2(R) converging to ∞. Recall
that ρ : SL2(R)×X → X induces an action on L2(X) via f 7→ f◦ρ(g). Let f ∈ L2(X).
Claim: f ◦ ρ(an) converges weak* to

∫
fdmX

If the claim holds, we have:

⟨f◦ρ(an), g⟩ →
〈∫

fdmX , g

〉
=

∫ ∫
fdmXgdmX =

∫
fdmX

∫
gdmX = ⟨f, 1⟩⟨1, g⟩

Where we used that
∫
fdmx is constant with respect to the other integral. The

statement ⟨f ◦ ρ(an), g⟩ →= ⟨f, 1⟩⟨1, g⟩ is exactly equivalent to mixing. Now all that
is left to do is to prove the claim.
Observe that ∥f ◦ ρ(an)∥ = ∥f∥ since ρ is unitary. The Banach-Alaoglu theorem
implies that f◦ρ(an) has a weak* convergent subsequence, say f◦ρ(ank

) → f0 ∈ L2(R)
and call αank

. The above lemma implies that there exists a non-trivial unipotent
element u ∈ S(α); and from the proposition it follows ∀a ∈ S(α) : f0 ◦ ρ(a) = f0. In
particular we have that f0 ◦ u = f0. Note that u is conjugate to an element of U in
SL2(R) and recall that the action of such elements is ergodic. Furthermore, recall the
implication ”invariant under ergodic ⇒ constant. Hence, f0 is constant, and using
the pointwise ergodic theorem we can write f0 =

∫
fdmX . This proves the claim and

hence the theorem.

In the next section we will prove the following interesting result:

Theorem: (Vanishing of matrix coefficients) Let H be a Hilbert space equipped
with a unitary representation of SL2(R), without any non-trivial invariant vectors.
Then ∀v, w ∈ H we have that the ”matrix coefficients” ⟨gv, w⟩ where g ∈ SL2(R)
vanish at ∞. Id est if gn → ∞, then ⟨gnv, w⟩ → 0. The reason for the name ”matrix
coefficients” is that in the finite dimensional case these ⟨gv, w⟩ terms for basis vectors,
exactly correspond to the coefficients in the Gram-Matrix.
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3 Howe-Moore and Applications

Firstly, two key facts about Hilbert spaces:
- For every linear functional f ∈ H∗∃!v = vf such that ∀v ∈ Hf(u) =< v, u >.
- Weak-* topology on H∗ : fn, f ∈ H∗ say that fn → f weak-* if ∀v ∈ H, fn(v) →
f(v). Banach-Alaoglu: The unit ball in H∗ is compact with respect to the weak-*
topology.

Question If g ∈ G, does the operator Tg : X → X given by Tg(x) = xg−1 act
ergodically on X ?

Astonishingly, as long as the closed subgroup generated by g is not compact, the
answer to the Question is yes. This ergodicity will play a key role in our later results.
The solution uses the Howe-Moore theorem, which we prove in this section.
Definition A sequence of elements (gn)n∈N in G is said to tend to infinity if for every
compact set K ⊆ G, there’s some N so that if n > N then gn /∈ K.
With Howe-Moore, we can answer the Question as follows. Take H = L2(X)/V ,
for V the space of ae constant functions in L2(X), and for g ∈ G, f ∈ L2(X), set
π(g)(f) : X → R to be the function given by [π(g)(f)](x) = f(gx). Since Tg preserves
the measuremX , π is a unitary representation of G. Note π is continuous in the strong
operator topology, which can be checked by density of Cc(X) in L2(X), for if gn → g
and ϕ ∈ Cc(X), then using the uniform continuity of ϕ we can see π (gn)ϕ → π(g)ϕ.
Take a simple factor Gi of G. Since G has no compact factors and Γ is irreducible,
we find that ΓGi is a dense subgroup.

Mixing can also be translated to a spectral property of the Koopman-von Neumann
representation. If 1 is a generator of Z, then the Z-action is mixing iff limn→+∞⟨π(n)f, g⟩ =
0 for all f, g ∈ L2

0 (X,µX). This former expression defines a matrix coefficient of π.

Definition: Let π : G → GL(H) be a representation. Given v, w ∈ H, the function
g ∈ G 7→ fv,w(g) = ⟨π(g)v, w⟩ is called a matrix coefficient of π.
Using the analogy of actions and their Koopman-von Neumann representations, we
define notions of ergodicity and mixing for a representation. Given a representation
π : G → GL(H), we say that v ∈ H is invariant if π(g)v = v for all g ∈ G.
Definition π is called ergodic if 0 is the only invariant vector. π is called mixing if its
matrix coefficients vanish at infinity: for every v, w ∈ H we have limg→∞ fv,w(g) = 0.
As above, by limg→∞ fv,w(g) = 0 we mean the following: for every ε > 0 there is a
compact K ⊂ G such that |fv,w(g)| < ε for all g /∈ K.

Fix a unitary representation π : G → U(V ).
Lemma (Identifying Fixed Vectors). Let v ∈ V be a vector. Then its stabilizer
Stabv G can be identified with

Stabv G =
{
g : fv,v = ∥v∥2

}
Moreover the matrix coefficient satisfies |fv,v| ≤ ∥v∥2 pointwise.
Proof. That pointwise inequality |fv,v| ≤ ∥v∥2 follows by Cauchy-Schwarz. It also
implies that if equality holds, then gv = cv for some c ∈ C with |c| = 1. Moreover

∥gv − v∥2 = 2 ·
(
∥v∥2 − Re⟨gv, v⟩

)
= 2

(
∥v∥2 − Re fv,v(g)

)
10



and the equality case of Cauchy-Schwarz implies the claim.
Recall Mautner’s lemma from last week:
Lemma (Mautner). Suppose that π : G → U(V ) is a unitary representation of a
topological group. Suppose that v ∈ V and sn, s

′
n ∈ G are stabilizing v, and moreover

there exists a sequence gn → g such that

lim sngns
′
n = 1 in G

Then g also stabilizes v.
Proof. By the Lemma, the stabilizer of v can be identified with the set of h ∈ G such
that fv,v(h) = ∥v∥2. One can then take the limit in

fv,v(g) = lim
n

fv,v (gn) = lim
n

fv,v (sngns
′
n) = ∥v∥2

since fv,v is a continuous function.

Another important and natural question that one might ask is the following: given an
ergodic G-space X and a subgroup H, when is H ergodic on X ? For semisimple Lie
groups, Moore’s Ergodicity Theorem gives a complete answer to the above question.
Theorem (Howe-Moore 1: Lie Group version). Let G be a connected real
semisimple Lie group, with finite center (Note: the center of SL2(R) = ±I). Suppose
that V is a unitary representation of G whose restriction to any non-compact simple
factor has no nontrivial invariant vector. Then all matrix coefficients vanish at infinity,
i.e. ∀v, w ∈ V :

lim
g→∞

⟨gv, w⟩ → 0

where g → ∞ means that g leaves every compact set in G.
The property ⟨gv, w⟩ → 0 is also called mixing, or decay of correlations.
Corollary (Ergodicity of actions). With the same assumptions as above, suppose
that G acts on X preserving a probability measure µ, and the action is ergodic. Then
any non-compact subgroup also acts ergodically on (X,µ).
One example is G acting on G/Γ, where ergodicity of the full G action is immediate
and thus implies ergodicity (in fact mixing) of any 1-parameter subgroup.

We will first prove Theorem Howe-Moore for the case of SL2R. For some notation,
consider the subgroups

A :=

{
at :=

[
t 0
0 t−1

]}
U+ =

{
us :=

[
1 s
0 1

]}
U− =

{
u−
s =

[
1 0
s 1

]}
Proposition (Invariant vectors for SL2 ). Suppose that V is a unitary repre-
sentation of SL2R.
If v is a vector that is A, or U+, or U−-invariant, then it is SL2R− invariant.
Proof. The proof is based on the Mautner Lemma.
For the case U+-invariant implies A-invariant, take

s1 =
1− t

ε
, s2 =

1− t−1

ε

and compute
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[
1 s1
0 1

]
·
[

t 0
ε t−1

]
·
[

1 s2
0 1

]
=

[
1 0
ε 1

]
so as ε → 0 we conclude that any U+-invariant vector is also A-invariant, again by
the Mautner lemma.
Theorem (Howe-Moore for SL2 ). Suppose that V is a unitary representation
of SL2R.
Then either V has an invariant vector, or it is mixing, i.e. ∀v, w ∈ V

lim
g→∞

⟨gv, w⟩ → 0

Proof. Suppose by contradiction that there exists v, w and a sequence gi → ∞
such that the matrix coefficient does not go to 0, e.g. Re ⟨giv, w⟩ ≥ ε > 0. Let
gi = ki,1aiki,2 be the KAK decomposition of gi (this is what is generally called Cartan
decomposition, in this case it is just the SVD decomposition, which is essentially
polar coordinates ”rotate stretch rotate”). By passing to a subsequence, assume that
ki,1 → k1 and ki,2 → k2, since K is compact. It follows that

ε ≤ lim inf ⟨k1 · ai · k2 · v, w⟩ = lim inf
〈
ai · (k2v) , k−1

1 w
〉

so up to replacing v, w, we can assume Re ⟨aiv, w⟩ ≥ ε > 0. Now aiv is a bounded
sequence of vectors, so let v0 be some weak limit, which is given by Banach-Alaoglu
(closed unit ball is weak* compact). Then v0 ̸= 0 since Re ⟨v0, w⟩ ≥ 0 by construction.
It suffices to check that v0 is U+-invariant, since by the Proposition it will be SL2R-
invariant. For u ∈ U+, we have

∥uv0 − v0∥ ≤ lim sup
i

∥∥a−1
i (uaiv − aiv)

∥∥ = ∥v − v∥ = 0

where we used that a−1
i uai → 1 as i → ∞.

So we are in the invariant vector case. The equivalence between vanishing coefficients
and mixing is simple by taking the functional form of mixing using L2 functions.

A similar proof can be used for general semisimple Lie group, which also have their
own Cartan decompositions.

Q: Why does this correspond to mixing?

The probability measure space (X,µ) =
(
G/Γ,mG/Γ

)
has a transitive measure-

preserving action of the simple Lie group G by translations: g : hΓ 7→ ghΓ. Consider
the orthogonal complement in L2(X,µ) to constant functions:

H = L2
0(X,µ) =

{
f ∈ L2(X,µ) |

∫
fdµ = 0

}
Then π : G → U(H), given by (π(g)f)(hΓ) = f

(
g−1hΓ

)
, is a unitary representation

without non-trivial invariant vectors (exercise!). By Howe-Moore, for any f1, f2 ∈ H

lim
n→∞

⟨π (αn) f1, f2⟩ = 0

We claim that this corresponds to the property of mixing for T on (X,µ) that inde-
pendence of T−nB from A :

lim
n→∞

µ
(
A ∩ T−nB

)
= µ(A) · µ(B)

12



Indeed, given a measurable subset E ⊂ X the projection fE of the characteristic
function 1E to H = L2

0(X,µ) is

fE(x) = 1E(x)− µ(E) = (1− µ(E)) · 1E(x) + (−µ(E)) · 1X\E(x).

One calculates

⟨fA, fB⟩ = µ(A ∩B)− µ(A)µ(B)

and

⟨π (αn) fA, fB⟩ = ⟨fA, fT−nB⟩ = µ
(
A ∩ T−nB

)
− µ(A)µ(B)

Finally, mixing implies ergodicity, because any set E with µ
(
E△T−1E

)
= 0 would

have

µ(E) = µ
(
E ∩ T−nE

)
→ µ(E)2

which is possible only if µ(E) = 0 or µ(E) = 1.

Theorem(Howe-Moore 0). Suppose G is a simple connected Lie group with finite
center. Γ is a lattice in G . Then H ↷ G/Γ is mixing (and ergodic) if H̄ is not
compact.

Mixing for G-action ⇒ Mixing for any subgroup H ⊆ G ⇒ Ergodicity of any un-
bounded subgroup H. So mixing has a property that it passes to subgroups.
This is certainly not true for ergodicity. Take any R ↷ X and any homomorphism
R2 → R.
Theorem(Howe-Moore 1). Suppose G is a simple connected Lie group with finite
center. Then any ergodic action of G on a propabiblity space is mixing.

Vanishing of matrix coefficients implies Howe-Moore 1 . Let L2(Xµ) and take H =
1⊥ = L2

0(X,µ) to be the zero mean functions, where 1 is the constant function f ≡ 1.
The orthogonal projection is f → f−

∫
X
fdµ. By ergodicity H has no nonzero G-fixed

vectors. Now we get ∀f1, f2 ∈ H < gf1, f2 >→g→∞ 0. If f1, f2 ∈ L2(X,µ), f̄1, f̄2 are
the orthogonal projections on H then

< gf1, f2 > =< g

(
f̄1 +

∫
f1dµ

)
, f̄2 +

∫
f2dµ >

=< gf̄1, f̄2 > + < g

∫
f1dµ, f̄2 > + < gf̄1,

∫
f2dµ > + < g

∫
f1dµ,

∫
f2dµ >

=

∫
f1dµ

∫
f2dµ < g1, 1 >=

∫
f1dµ

∫
f2dµ

Why can we rule out the case of a dense compact subgroup?

Proposition If D ≤ G is a dense subgroup, then the action of D on X is ergodic.

Proof. For f ∈ L2(X) define its stabilizer as

Stab(f) = {g ∈ G | π(g)(f) = f}

13



If f is D-invariant, then D ⊆ Stab(f).
If gn ∈ Stab(f) and gn → g, then π(g)f = limn→∞ π (gn) f = f so that g ∈ Stab(f).
By density of D, we find Stab(f) = G and so f is G-invariant, meaning it is essentially
constant.
By the proposition applied to D = ΓGi, L

2(X) has no non-constant functions invari-
ant under the action of Gi. Hence, π : G → U

(
L2(X)

)
descends to a representation

π : G → H for which the hypothesis of Howe-Moore applies.
So, take α, β ∈ L2(X). Let v = [α], w = [β] be the projections of α, β to H =
L2(X)/V . The inner product on H is given by, for ᾱ = 1

mX(X)

∫
X
αdmX ,

⟨v, w⟩ =
∫
X

(α− ᾱ)(β − β̄)dmX

If g does not generate a compact subgroup, then either gn → ∞ or g−n → ∞.
Since any g-invariant function is also g−1-invariant, we may assume without loss of
generality that gn → ∞. Then Howe-Moore gives ⟨π (gn) v, w⟩ → 0 which we can
rewrite as ∫

X

α (gnx)β(x)dmX →
∫
X
α
∫
X
β

mX(X)

Definition: If the equation above holds for every α, β ∈ Cc(X), then we say that the
action of Tg on X is mixing.
Howe-Moore thus implies that the action of Tg on X is mixing.

4 More on Moore ergodicity

Theorem(Howe-Moore ergodicity theorem). Let G be a semisimple Lie group
with finite center and no compact simple factors, and X an irreducible G space with
finite G-invariant measure. If H is a closed noncompact subgroup of G, then H also
acts ergodically on X.

The previous theorem provides a powerful criterion of ergodicity for homogeneous
actions, as the next corollary illustrates.
Corollary Let G be a simple noncompact Lie group with finite center and let Γ be a
lattice in G. Then any closed noncompact subgroup L of G acts ergodically on G/Γ
by left-translations.

Proof. G clearly acts ergodically on G/Γ, since the action is transitive. By the
Howe-Moore theorem, the L-action must also be ergodic.

The Howe-Moore ergodicity theorem is in fact a spectral result. In view of the char-
acterization of ergodicity in terms of the unitary representation of G on L2(X,µ), the
theorem results from the following fact.
For any connected noncompact simple Lie group G with finite center, and unitary
representation π of G with no nonzero invariant vectors, a closed subgroup L of G
such that π|L has nonzero invariant vectors must be compact. (Mixing implies that
if elements act trivially, they must be jailed in a compact set).

14



Observe that given a nontrivial L-invariant vector v ∈ H, the function f(g) :=
⟨π(g)v, w⟩ is constant on L. Therefore, it is sufficient to prove that for all v, w ∈ H,
⟨π(g)v, w⟩ approaches 0 as g → ∞ in G, which is exactly the content of Howe-Moore.

Proposition:
i) Let H ⊂ G be a closed subgroup of a locally compact group G and X a nonsingular
G-space. Then H is ergodic on X if and only if G acting diagonally on X ×G/H is
ergodic with respect to the product measure class.
ii) For two closed subgroups H1 and H2 of G,H1 is ergodic on G/H2 if and only if
H2 is ergodic on G/H1.
Proof. Let A ⊂ X ×G/H be G-invariant and neither null nor conull. For y ∈ G/H,
define the section Ay = {x ∈ X : (x, y) ∈ A}. Invariance of A implies that for any
g ∈ G, gAy = Agy. Fubini then implies that Ae is neither null nor conull. But Ae is
H-invariant.
Conversely, letB ⊂ X beH-invariant subset, and choose a Borel section σ : G/H → G
of the projection G → G/H. Define

A = {(x, y) ∈ X ×G/H : x ∈ σ(y)B}
Since B is H-invariant and for g ∈ G, there exists an h ∈ H such that σ(gy) =
gσ(y)h,A is a G-invariant Borel set. If B is neither null nor conull, then the same
holds for A.
For the second part, by the first part, H1 is ergodic on G/H2 if and only if G is
ergodic on G/H1 ×G/H2, which is symmetric in H1 and H2.

Applications: A new ergodic theorem, Horocycle flow is mixing
of all orders and Furstenberg’s theorem

Now we observe that decay of matrix coefficient implies a new mean ergodic theorem:

Corollary Consider an ergodic action of G = SLd(R) on a probability space (X,µ).
Let Bn be a sequence of Borel subsets of G such that 0 < m (Bn) < ∞ and m (Bn) →
∞. Then for every f ∈ L2(X),

1

m (Bn)

∫
Bn

f
(
g−1x

)
dm(g) →

∫
X

fdµ as n → ∞

in L2-norm.
Proof. It suffices to consider a function f with

∫
X
fdµ = 0.

Let ε > 0 and Q be a compact subset of G such that

|⟨πX(g)f, f⟩| < ε for all g /∈ Q.

Then we have∥∥∥ 1
m(Bn)

∫
Bn

πX(g)fdm(g)
∥∥∥2 = 1

m(Bn)
2

∫
Bn×Bn

〈
πX

(
g−1
2 g1

)
f, f

〉
≤ (m⊗m)({(g1,g2)∈Bn×Bn:g

−1
2 g1∈Q})

m(Bn)
2 ∥f∥2 + ε

With a change of variables (g1, g2) 7→
(
g1, g

−1
2 g1

)
, we deduce that

(m⊗m)
({

(g1, g2) ∈ Bn ×Bn : g−1
2 g1 ∈ Q

})
≤ m (Bn)m(Q)
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Since m (Bn) → ∞, the corollary follows.

Even more is known than mixing of the geodesic and horocycle flows: Marcus proved
that the horocycle flow is mixing of all orders. This is proved using Van der Cor-
put’s lemma, which says that if the gaps in a sequence are equidistributed, then the
sequence is equidistributed:

Let un be a bounded sequence in a hilbert space. If

lim
H→∞

1

H

H∑
h=1

lim sup
N→∞

| 1
N

N∑
n=1

⟨un+h, un⟩| = 0

then we have that limN→∞
1
N

∑N
n=1 un = 0.

A proof of this lemma and the full theorem can be found on Joel Moreira’s blog.

Furstenberg’s theorem says that horocycle flows on compact homogeneous spaces are
measure-theoretically rigid in the following sense:

Theorem (Furstenberg). If X = Γ\SL(2,R) is a compact homogeneous space,
then the horocycle flow is uniquely ergodic, i.e. there exists a unique U -invariant
probability measure.
To prove that the horocycle flow is uniquely ergodic, Furstenberg used that µX is
mixing for the geodesic flow, i.e. that the Koopman-von Neumann representation of
the geodesic flow is mixing.

Equidistribution: The Wavefront Lemma

We write Howe-Moore under this form to talk about the final lemma:

For α, β ∈ L2(X), ∫
X

α(xg)β(x)dx →
∫
X
α
∫
X
β

mX(X)

as g → ∞.

Using this, we can establish the following equidistribution result, a version of which
will be seen next week.
Theorem. Let Y = (Γ ∩ H)\H. Then, as g → ∞ in H\G, the sets Y g become
equidistributed, meaning for all f ∈ Cc(X),

1

mY (Y )

∫
Y

f̃(yg)dmY → 1

mX(X)

∫
X

fdmX

where f̃ : Y → R is given by f̃((Γ ∩H)h) = f(Γh).
Remark: The idea of the proof is to realize Y as the subset ΓH of X. Then, we apply
Howe-Moore with α = χY , viewing Y = ΓH ⊆ X, and β = f . The only problem
is that, when mX(ΓH) = 0, the mixing identity tells us nothing as α = χY = 0 a.e.
The solution will be to ’fatten’ Y , so that it has positive measure in X.
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