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Our goal in this talk is to examine the asymptotic (i.e. limiting) distribution of the
horocycle orbits on the quotient space

X2 ∶= PSL2(Z)/PSL2(R) ≅ SL2(Z)/SL2(R).
In this talk, we will focus on SL2(R).

1. Recap on the Geodesic Flow, Horocycles and their Parametrizations

In our last talk, we defined horocycles in the Hyperbolic plane visually as “circles with
one point at infinity”. In the Poincaré disk model, these were simply the circles touching
the boundary of the disk. Similarly, in the half-plane model, these were either circles
touching the x-axis or lines parallel to the x-axis (see Figure 1). Intuitively, one can
switch from the disk model to the half-plane model by doing the following: Cut open the
boundary of the disk at point x, so that the disk unfolds into the half-plane. Now you
can take that point x and define it to be infinity. Note that horocycles that touch the
boundary of the disk in point x turn into horizontal lines in the half-plane model. Both
models are useful, but the disk model is “more honest” in a way since there is no special
infinity point and all horocycles look the same.

Figure 1. Horocycles in the disk model and in the halfplane model of H.

Also, remember that we can identify any element g ∈ SL2(R) (or PSL2(R)) with a
unique element of the unit tangent bundle of the hyperbolic plane (z, v) ∈ T1H by acting
with g on i by Möbius transformations. So this means that z represents the “point” and
v the “little arrow”.
Furthermore, we introduced the matrix

at = (
e−t/2 0
0 et/2

) with inverse a−1t = (
et/2 0
0 e−t/2

)

and the geodesic flow on SL2(Z)/SL2(R) by
gt ∶ xz→ xat = at ⋅ x.
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We can now give a more abstract definition of a horocycle:

Definition/Proposition 1.1 (Horocycle defined by T1H). A horocycle through a point
(z, v) ∈ T1H is the set of points in T1H whose orbits under the geodesic flow are asymp-
totic.
The analogous set in SL2(R) is given for g ∈ SL2(R) by the set of h ∈ SL2(R) with

d(ga−1t , ha−1t )→ 0 (1)

where we use the usual left-invariant Riemannian metric on SL2(R) as introduced in the
talks before.

You can check that the visual definition in Figure 1 coincides with the one given in
Definition 1.1: The horocycles parallel to the x-axis all correspond to the points with an
arrow pointing upwards (see Figure 2). Intuitively, you can think of the geodesic flow
with respect to time, so point (z3, v3) is always at a non-zero positive distance from point
(z2, v2) and they will never meet.
In general, all points on the same horocycle are exactly the points of which the geodesic
flow “meets at the same point at the same time” at infinity (see Figure 3). Note that
this is only the case because they start at the same “height”, i.e. the same horocycle.

Figure 2. Horocycles horizontal to the x-axis in the half-plane model.

Lemma 1.2. Let g ∈ SL2(R). Any h ∈ SL2(R) with d(ga−1t , ha−1t ) → 0 as t →∞ is of the
form gus where

us = (
1 s
0 1
)

for some s ∈ R. Conversely, we have d(ga−1t , gusat−1)→ 0 as t→∞ for any s ∈ R.
In other words, this shows that the horocycle orbit through g ⋅ i ∈ T1H as the orbit

U− ⋅(g ⋅ i), where U− = {us ∣ s ∈ R} is the subgroup of unipotent upper triangular matrices.

Proof of Lemma 1.2. By using the left-invariance of d under SL2(R) and replacing h with
g−1h we may assume without loss of generality that g = id. Again, by left-invariance, we
get that

d(a−1t , ha−1t ) = d(id, atha−1t ) = d(atha−1t , id)
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Figure 3. Other horocycles in the half-plane model and the disk model.

for any t ∈ R. Writing

h = (a11 a12
a21 a22

) ∈ SL2(R)

we compute

atha
−1
t = (

e−t/2 0
0 et/2

)(a11 a12
a21 a22

)(e
t/2 0
0 e−t/2

) = ( a11 a12e−t

a21et a22
) . (2)

Thus, atha−1t → id as t→∞ if and only if a11 = a22 = 1 and a21 = 0. That is, if and only if
h lies in U−. □

It is also interesting to consider the group

U+ = {(1 0
s 1

) ∣ s ∈ R}

which is called the unstable horocycle subgroup. On the other hand, U− is then the stable
horocycle subgroup. Here, an element us can be understood as the Möbius transformation
sending z ∈ H to z + s. So it simply translates the point z horizontally by s. They are
both normalized by the diagonal subgroup A = {at ∣ t ∈ R}. Furthermore, we define the
following subgroup:

Definition 1.3 (Borel subgroup). The Borel subgroup is defined as

B = U+A = AU+ = {(a 0
b a−1

) ∣ a ∈ R/{0}, b ∈ R} ⩽ SL2(R).

You can think of B as the set of elements g of SL2(R) for which d(ga−1t , ha−1t ) stays
bounded as t→ −∞.

2. Local Coordinates and Haar measure

Now these stable and unstable horocycle groups provide local coordinates on SL2(R):
Consider the following Lie-algebras

u− = {(0 s
0 0

) ∣ s ∈ R}, u+ = {(0 0
s 0

) ∣ s ∈ R}, a = {(t 0
0 −t) ∣ t ∈ R}
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of U−, U+ and A respectively. Then it holds u−⊕ u+⊕ a = sl2(R). Also, it holds u−⊕ a = b
is the Lie algebra of the Borel subgroup B.

Lemma 2.1 (Local coordinates). The map

u− ⊕ b→ SL2(R), (X,Y )↦ exp(X) exp(Y )

is a local diffeomorphism around 0.

Note that the map in the lemma is just a slightly adapted version of the exponential
map, which respects the decomposition of sl2(R) into expanding and non-expanding
directions (as t→ −∞).

Proof of Lemma 2.1. Let Φ be the map in the lemma. The differential of Φ at zero is
the identity. Thus, there is a neighborhood O′ of zero so that Φ restricted on O′ is a
diffeomorphism. □

The Lemma 2.1 allows us to consider neighborhoods of the identity in SL2(R) and other
groups that satisfy certain natural properties for the conjugation action. For instance,
the map

b = a⊕ u+ Ð→ B, (X,Y )↦ exp(X) exp(Y )

is also a local diffeomorphism around 0. This yields the following construction/definition:

Definition 2.2 (Rectangular Neighborhood). Given two small enough neighborhoods
Oa, respectively Ou+ of 0 in a, respectively u+, the image under the above map yields a
rectangular neighborhood OB of the identity in B, which satisfies that

atOBa−t ⊆ OB

for any t ⩽ 0.

Figure 4. Example of a rectangular neighborhood in the standard funda-
mental domain.
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3. Parametrization of periodic Horocycle Orbits

In this section, we are discussing the periodic orbits of the stable horocycle subgroup
U− on the quotient space X2. We define the following:

Definition 3.1 (Periodic points and orbits). A point x ∈X2 is called periodic if there is
s ∈ R/{0} such that us.x = x. In this case, the smallest such s is called the period and the
orbit U−.x is also called periodic.

Lemma 3.2 (Decomposition of the Haar measure). Let m
(r)
B be a right Haar measure on

B and let mU− be a left Haar measure on U−. Then any left Haar measure on SL2(R)
restricted to U−B is proportional to the pushforward Φ∗(mU− ×m(r)B ) where Φ ∶ U− ×B →
SL2(R), (u, b)↦ ub.

Proof. For the proof see [3, Lemma 1.5, page 4]. □

Lemma 3.3 (A collection of periodic orbits). For any t ∈ R the orbit

U−.(SL2(Z)at) = SL2(Z)atU− = SL2(Z)U−at
is periodic with period et.

Intuitively, Lemma 3.3 gives us an example of periodic orbits: These are simply the
ones that are “horizontal” horocycles in the quotient space X2. Because SL2(Z) is rep-
resented by (i, i) in X2 (see Figure 5 for visualization). If we let at act on it we will get
the geodesic flow which moves (i.i) along the y-axis. Then letting U− act on it, we will
have the horocycle flow which is parallel to the x-axis. One might ask why the periods of
periodic orbits are different when they look like they have the same length in the upper-
half plane model, but notice that we are using the hyperbolic distance, not the Euclidean
distance.

Figure 5. Periodic orbits in the half-plane model of H.

Proof of Lemma 3.3. We first claim that the orbit of the identity coset U−.(SL2(Z) id) =
SL2(Z)U− in X2 is periodic of period 1. Indeed, take any point SL2(Z)us in SL2(Z)U−.
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It is in SL2(Z) id if and only if us ∈ SL2(Z), which is if and only if s ∈ Z. Thus, the
smallest non-zero s ∈ Z (i.e. the period) is 1.
Now let t ∈ R. Then SL2(Z)atus = SL2(Z)at if and only if (see Lemma 1.2)

atusa
−1
t = (

1 se−t

0 1
) = use−t ∈ SL2(Z).

This proves that the point SL2(Z)at is periodic with period et as desired. □

However, we can do even better: The next proposition states that the periodic orbits
in Lemma 3.3 are the only periodic orbits in X2!

Proposition 3.4 (One-parameter family of periodic orbits). Let x ∈ X2 be a periodic
point for U−. Then there is some t ∈ R so that U−.x = U−.(SL2(Z)at).

Proof. We first prove the following claim:
Claim: It holds that at.x → ∞ as t → ∞. As seen in our first presentation, this is
equivalent to saying that for any compact set K ⊆ X2, there exists some TK such that
at.x /∈K for all t ⩾ TK (i.e. the sequence leaves any compact set at some time). Moreover,
let S be the period of x. Then at.x is also periodic for U− and has period Se−t because

usat.x = at(a−1t usat).x = atuset .x = at.x

if and only if set is a multiple of the period S.
Proof of the Claim: By contradiction, suppose that at.x /Ð→∞ as t →∞. Then there
exists a compact set K and a sequence (tn)n with tn →∞ for n →∞ such that at.x ∈ K
for all n ∈ N. Let now r > 0 be a uniform injectivity radius on K (we have seen that this
exists in our last talk). So for any us ∈ U− ∩Br(id) and any n ∈ N we therefore have

us.(atn .x) = atn .xÔ⇒ s = 0.

However, since the period of the elements atn .x goes to zero, we know that arbitrarily
small non-zero sn ∈ R with usn .(atn .x) = atn .x exist. This is a contradiction, which ends
the proof of the claim.
To see how the claim implies the proposition, remember that orbits of the geodesic flow
(i.e. the geodesics) are either vertical lines (parallel to the y-axis) or half-circles centered
on the x-axis. Let (zt, vt) ∈ F be the point corresponding to at.x, where F ⊆ T1H is
the standard fundamental domain in X2 (see our last talk). This means we are simply
looking at what happens to the corresponding point in the fundamental domain.
Let K ′ be the set of points in F with imaginary part ⩽ 1. Note that the image K of K ′

in SL2(Z)/T1H is compact. Thus, let TK > 0 so that at.x /∈ K for all t ⩾ TK as in the
claim. We claim that this implies that vTK

is a multiple of i. Indeed, if this were not the
case, the geodesic through (zTK

, vTK
) would be a half circle, and thus zt would reach the

imaginary part ⩽ 1 for some t > TK (see Fig6).

Applying any u ∈ U− we obtain that the point in F corresponding to u.(aTK
.x) lies on

the imaginary axis and has a vector pointing north. Therefore, there is some t′ ∈ R so
that at′ .(uaTK

.x) = SL2(Z)id (i.e. transporting back to (i, i) ∈ F ). In particular,

U.x = U.(SL2(Z)at′uaTK
) = U.(SL2(Z)at′+TK

)

as in the proposition.
□
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Figure 6. Orbit of a point (zTK
, vTK
) with the error vTK

not a multiple of
i in the upper half-plane model

4. Equidistribution of long periodic horocycle orbits

Notice that any periodic U−-orbit gives rise to a natural probability measure on the

orbit. Indeed, if x ∈X2 is periodic of period T then 1
T ∫

T

0 f(us.x)ds for f ∈ Cc(X2) defines
a linear functional (and hence a measure) with the required properties.

Theorem 4.1 (Sarnak, 1981 [2]). Let xn be a sequence of U−-periodic points whose period
goes to infinity as n → ∞. Then the periodic orbit measures on U−.xn equidistribute to
the normalized Haar measure mX2 on X2 as n→∞.

The main idea of the proof of Theorem 4.1 is to “thicken” the periodic orbits which we
have seen in Proposition 3.4. This happens by choosing some ε “rectangular neighbor-
hoods” around each of these orbits, making them “thicker” (see Figure 7 for intuition).
In the end, we let them go to a line (i.e. the ε-neighborhoods to zero), finalizing the
proof.

Proof of Theorem 4.1. Let f ∈ Cc(X2) and let ε > 0.As the function f has compact
support, it is uniformly continuous. As the projection SL2(R) Ð→ X2 is 1-Lipschitz,
there is a δ > 0 so that

d(g, id) < δ Ô⇒ ∣f(xg) − f(x)∣ < ε
for any g ∈ SL2(R) and x ∈ X2. Denote by P0 = SL2(Z)U− the periodic orbit of period 1.
As P0 is compact, there is a uniform injectivity radius on P0. By shrinking δ if necessary
we may assume that δ itself is an injectivity radius on P0.

Definition of the thickening: Let OB ⊆ B∩BSL2(R)
δ (id) be a rectangular neighborhood

of the identity as introduced in Definition 2.2 so that

a−tOBat ⊆ OB

for all t ⩾ 0. (You can check this inclusion if you insert the matrices and calculate them,
O is of the form B.) Moreover, let

P̃0 = O.P0
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Figure 7. The “thickened orbits” used in the proof of Theorem 4.1.

be the thickening of the orbit P0 given by OB and denote by Pt the orbit of period et and
by

P̃t = a−t.P̃0 = (a−tOBat).Pt

the induced thickening. Notice that the neighborhoods a−tOBat get thinner in the unsta-
ble direction as t →∞ and do not get thicker in any direction. For convenience we also
define

St = {usb ∣ s ∈ [0, et), b ∈ a−tOBat}.
These sets do not have a geometric visualization, they are simply practical for computa-
tions. Note also that St = a−tS1at and that

P̃t = {SL2(Z)atg ∣ g ∈ St} = {SL2(Z)gat ∣ g ∈ S1}.

Integral over a thickened neighborhood in the group: First, we would like to
replace the integral of f along the orbit Pt by the integral over a larger neighborhood in
SL2(R). Observe first that

∣et∫
et

0
f(SL2(Z)atus)ds −

e−t

m
(r)
B (a−tOBat)

∫
a−tOBat

∫
et

0
f(SL2(Z)atusb)dsdm(r)B (b)∣

⩽ e−t

m
(r)
B (a−tOBat)

∫
a−tOBat

∫
et

0
∣f(SL2(Z)atus) − f(SL2(Z)atusb)∣dsdm(r)B (b) < ε (3)

since a−tOBat ⊆ OB for any t > 0 by the choice of the neighborhood OB (according to the
uniform continuity). By Lemma 3.2 the normalized integral

e−t

m
(r)
B (a−tOBat)

∫
a−tOBat

∫
et

0
f(SL2(Z)atusb)dsdm(r)B (b) (4)

is equal to

1

mSL2(R)(St) ∫St

f(SL2(Z)atg)dmSL2(R)(g).
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Since SL2(R) is unimodular, mSL2(R)(St) = mSL2(R)(S0) and by replacing atga−1t with g
the integral in (4) is equal to

1

mSL2(R)(S0) ∫S0

f(SL2(Z)gat)dmSL2(R)(g). (5)

Integral over the thickened orbit: Note that the image {SL2(Z)g ∣ g ∈ S0} under the
projection of S0 to X2 is simply P̃0.

Claim 4.2. If δ is small enough, the set S0 = {usb ∣ s ∈ [0,1), b ∈ OB} is injective.

Therefore, the Haar measure on S0 equals the Haar measure on P̃0. We will look at
the proof of the Claim a bit later. However, with it, the integral in (5) is equal to

1

mX2(P̃0)
∫
P̃0

f(xat)dmX2(x) = ⟨a−t.f, f0⟩

where f0 = 1
mX2

(P̃0)
χP̃0

.

Applying the mixing property: Recall that the geodesic flow X2 is mixing on X2 as
we have seen in the two previous presentations. That is, for any f1, f2 ∈ L2(X2) we have

⟨at.f1, f2⟩Ð→ ∫
X2

f1dmX2 ∫
X2

f1dmX2

as tÐ→ ±∞. In particular

⟨at.f, f0⟩Ð→ ∫
X2

fdmX2 ∫
X2

f0dmX2 = ∫
X2

fdmX2

as t Ð→ ∞. Tracing back our arguments (i.e. combining all equations (3), (4) and (5)),
we can deduce that the integral

e−t∫
et

0
f(SL2(Z)atus)ds

over the orbit P0 is always within ε of a convergent expression with limit ∫X2
fdmX2 and

therefore for large enough t within 2ε of the limit itself. Thus

e−t∫
et

0
f(SL2(Z)atus)dsÐ→ ∫

X2

fdmX2

as tÐ→∞ as claimed in the proposition.
Proof of the Claim 4.2. Assume that there are s1, s2 ∈ [0,1) and b1, b2 ∈ OB with

SL2(Z)us1b1 = SL2(Z)us2b2

Setting b = b1b−12 and rearranging we have

us1bu
−1
s2 ∈ SL2(Z)

Write b = (α 0
β α−1

). Then

us1bu
−1
s2 = (

α + βs1 α−1s1
β α−1

)(1 −s2
0 1

) = (α + βs1 α−1s1 − αs2 − βs1s2
β α−1 + βs2 )

However, if δ is small enough, b ∈ OB must be close to the identity. Since β is by the above
an integer, it must be zero. Hence, α,α−1 ∈ Z and they are both close to the identity. We
conclude that b = id. This shows that s1 − s2 ∈ Z and thus s1m = s2 as s1, s2 ∈ [0,1)

□
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Proposition 4.3. Every hyperbolic circle (i.e. a boundary of a ball in the hyperbolic
plane) is an Euclidean circle.

If you are interested, in [3, page 8] they do a much more technical proof. Here we show
that also every Euclidean circle is a hyperbolic circle.

Proof of Proposition 4.3. The key fact you need is that Möbius transformations of C∪{∞}
preserve all circles and lines. You can prove this by the fact that all orientation preserving
Möbius transformations are generated by N(z) = 1

z , Tb(z) = z+b, Ma(z) = az for a, b ∈ C,
with a /= 0 which all preserve lines and circles.
So the group of Möbius transformations of the upper half-plane (denoted H+) preserves
the set of Euclidean circles in H+ (the only lines in H+ are horizontal and transform to
themselves or to Euclidean circles tangent to the real line, none of which is a Euclidean
circle entirely contained in H+). Also, hyperbolic circles are preserved under that action,
since that action is the same as the group of orientation-preserving isometries of the
hyperbolic metric on H+.
There exists a Möbius transformation that transforms the Poincaré disc to the upper half
plane, which is called the Cayley transformation:

ϕ ∶ B1 Ð→H+, z z→ z − i
z + i

This Cayley transformation takes Euclidean circles to Euclidean circles (as there are no
lines in the Poincaré disc), and it takes hyperbolic circles to hyperbolic circles (it is an
isometry between the hyperbolic metrics on the Poincaré disc and the upper half plane).
So, we have reduced the problem to showing that in the Poincaré disc with the hyperbolic
metric, hyperbolic circles are the same as Euclidean circles. The group of Möbius trans-
formations on the Poincaré disc equals the group of orientation-preserving isometries of
the hyperbolic metric on the Poincaré disc, and this action is transitive on points. Hence,
for all r > 0 the action is transitive on the set of hyperbolic circles of hyperbolic radius r.
Thus, it suffices to find, for each r > 0, a single example of a hyperbolic circle of hyperbolic
radius r which is simultaneously a Euclidean circle: There is a Euclidean circle centered
at the origin which is a circle of hyperbolic radius r. □

Note that in the next theorem, the paper [3, page 9] switched the coset. We leave it
this way, but just so you notice.

Theorem 4.4. Let Γ be a lattice in SL2(R) and let X = SL2(R)/Γ. Denote by mY any
Haar measure on the orbit Y = SO(2)Γ and by mX any Haar measure on X. Then for
any f ∈ Cc(X) we have

1

mY (Y ) ∫Y
f(at.y)dmY (y)Ð→

1

mX(X) ∫X
f(x)dmX(x)

as t→ ±∞.

Note that up to a switch from left- to right-quotients the theorem essentially states that
the circle of radius t with arrows pointing outwards folded up under Γ equidistributes as
tÐ→∞. The statement for tÐ→ −∞ is the same just with arrows pointing inwards. See
Figure 8 for intuition.

Proof. We restrict our attention to the case t Ð→ ∞ as the case t Ð→ −∞ is analogous.
Let f ∈ Cc(X) abd let ε > 0. Denote G = SL2(R) and K = SO(2). Let O ∈ U−A be
an open (rectangular) neighborhood of the identity with atOa−t ⊂ O for any t > 0 (a
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Figure 8. Intuition for Theorem 4.4: Taking the integral of a function over
a very large horocycle is approximately the same as taking the integral over
the whole fundamental domain.

contracted neighborhood) so that f(g.x) is ε-close to f(x) for any g ∈ O and any x ∈ X.
By these choices the integral 1

mY (Y ) ∫Y f(at.y)dmY (y) is ε-close to

It =
1

mUA(O)
1

mY (Y ) ∫O ∫Y
f(at.g.y)dmY (y)dmU−(g)

If F is a fundamental domain for K Ð→ Y then the above is equal to

1

mUA(O)
1

mK(k) ∫O ∫F
f(at.gkΓ)dmK(k)dmU−(g)

by definition of the Haar measure ob Y . By Lemma 3.2 applied to the Iwasawa decom-
position (with U−A and K)

It =
1

mG(OF ) ∫OF
f(at.gΓ)dmG(g),

which converges by the mixing property of the geodesic flow to the desired limit as
t→∞. □
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