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Throughout these notes we are following [1] up to and including Proposition 2.

Lets first look at the notation used:

• G := SL2 (R)

• Γ := SL2 (Z)

• K := SO2 (R)

• A := {at =
(
e−

t
2 0

0 e
t
2

)
: t ∈ R}

• U := {ut =

(
1 t
0 1

)
: t ∈ R}

Note that it is important throughout and when reading [1] that vectors sometimes are interpreted as
1x2 matrices.

Furthermore, we equip U ∼= R with the Lebesque measure as a Haar measure and K ∼= S1 with the
spherical measure that assigns measure 2π. Note that this measure is induced by∫ 2π

0

f (kθ) dθ, where f ∈ C (K) and kθ =

(
cos θ − sin θ
sin θ cos θ

)
(1)

We shall not state a Haar measure for G here, one can however be found in [1]. We will however look
at the unimodularity of G.

Proposition 1 G is unimodular, i.e. every right Haar measure is a left Haar measure.

Proof : Lets assume thatm is a right Haar measure onG and fix g ∈ G. Definemg asmg (B) := m (gB).
Now as left multiplication by g is a homeomorphisem, mg is again a Borel measure with finite measure
on compact sets and positive measure on non empty sets. Additionally, it is right invariant:

mg (Bh) = m (gBh) = m (gB) = mg (B) . (2)

we can thus conclude that it is again a right Haar measure.
As the Haar measure is unique up to a multiplicative constant, there exists a function χ : G → (0,∞)
such that for all g ∈ G we have mg = χ (g)m. Now note that for any non empty Borel set B we have:

χ (gh)m (B) = mgh (B) = mg (hB) = χ (g)m (hB) = χ (g)mh (B) = χ (g)χ (hχ) (3)

and thus χ (gh) = χ (g)χ (h).
Now using that (0,∞) is abelian and some other algebraic arguments found in detail in [1] one can
conclude that χ ≡ 1. It follows that m = mg for all g ∈ G and thus m is left invariant.□

A quicker way to proof that goes as follows: Note that G is connected simple Lie and thus connected
semi simple Lie. Now use the fact that any group that is connected semi simple Lie is unimodular.

Moving on, we will now come to two decompositions and then a result regarding the primitive
integer vectors.
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Lemma 1 Iwasawa deomposition
Let g ∈ G, then there exists unique k ∈ K, a ∈ A, u ∈ U such that g = uak

Proof:
Take v = e2g. Then there exists a unique k ∈ K such that vk = ||v||e2. Now choose t ∈ R such
that vkat = e2 (Thinking about these properties geometrically can aid the understanding). Now
e2kat = e2 implies gkat = u for some unique u ∈ U . Rearranging this then yields g = ua−tk for all of
those unique.□

Lemma 2 KAK decomposition
Let g ∈ G, then there exists a unique t and some k, l ∈ K such that g = ka±l. Furthermore, ∀ϵ > 0 it
holds that the set

Vϵ = K{at : |t| < ϵ}K (4)

is an open neighborhood of the identity.

Proof: See [1] as its rather long.

Proposition 2 The set of primitive integer vecotrs in R2 is given by e2Γ = Γ/Γ∞, where Γ∞ := Γ∩U

Proof: We shall only prove the first part here. Let g =

(
a b
c d

)
∈ Γ. Then ad-bc = 1 which implies

that c and d are coprime. Thus e2g =

(
c
d

)
is a primitive vector. On the other hand, if v = (m,n)

is a primitive vector, then m and n are coprime which implies that there exists a, b ∈ Z such that

am + bn = 1. Now set g =

(
b −a
m n

)
. This g is clearly in Γ. We conclude the proof with the fact

that v = e2g□

We will now move on to some equidistribution results. For that we however need a general result
regarding sequences.

Lemma 3 Let ϕ : (−∞, 0) → C and a ∈ C. The following are equivalent:

1. ∀ϵ > 0 there exists Γϵ ∈ (−∞, 0) such that ∀t ≤ Γϵ it holds that |ϕ (t)− a| < ϵ.

2. For every sequence (tn)n inN of negative numbers for such that tn → −∞, it holds that ϕ (tn) → a
as n → ∞.

Using this Lemma we can now move on to the first equidistribution result.

Proposition 3 For t ∈ R take kt ∈ K arbitrary. Then the sets ΓUatkt equidistribute in Γ \G as
t → −∞ in the following sense:∫ 1

0

f (Γusa−tnktn) ds →t→−∞
∫
Γ\G

f (x) dx. (5)

Proof:
Using Lemma 3 it will be enough to show that for every sequence (tn)n∈N and for all f ∈ Cc (Γ \G)
it holds that ∫ 1

0

f (Γusa−tnktn) ds →
∫
Γ\G

f (x) dx. (6)

Now note that K is compact and thus every sequence contains a subsequence such that ktn → k ∈ K
where we maybe need to adjust the indices. For simplicity denote it as kn and an insted of ktn and
a−tn . Now one findes the following inequality for ϵ > 0:

|
∫ 1

0

f (Γusankn) ds−
∫
Γ\G

f (x) dx| ≤ |
∫ 1

0

f (Γusankn) ds−
∫ 1

0

f (Γusank) ds|

+|
∫ 1

0

k · f (Γusan) ds−
∫
Γ\G

k−1 · f (x) dx|.
(7)
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No note that f is uniformfly continuous and thus there exists N1 ∈ N such that ∀n ≥ N1

|f (xkn)− f (xk) | < ϵ
2 ∀x ∈ Γ/G. Now k · f ∈ Cc (X) such that as ΓUan equidistributes in Γ \G we

can find some N2 ∈ N such that ∀n ≥ N2 we have∫ 1

0

k−1 · f (Γusan) ds−
∫
Γ\G

k−1 · f (x) dx|| < ϵ

2
. (8)

Now set N = max (N1, N2) and now ∀n ≥ N it holds that

|
∫ 1

0

f (Γusan) ds−
∫
Γ\G

f (x) dx| < ϵ. (9)

Now as every sequence contains a subsequence converging to
∫
Γ\G f (x) dx, the entire sequence con-

verges to said limit. □
Finally, the last proposition expands the equidistribution results from above.

Proposition 4 For fixes f, the rate of equidistribution is independent of kt, meaning that ∀ϵ > 0 there
exists Tϵ < 0 with the right properties for all kt ∈ K

Proof:
The proof is done in [1] via a simple contradiction.
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