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Preface

These notes are very heavily based on those from Manuel Luethi from a couple of semesters
ago. You can find them at https://metaphor.ethz.ch/x/2018/£fs/401-3370-67L/sc/
primitive.pdf.

Counting

We shall very often make use of the concept of disintegration. If we have a chain of
unimodular (sub)groups H < U < G, then integration over H\G can be understood as
first going over the quotient U\G and then the fibers H\U, that is,

F(Hg) dmupa(Hg) = / f(Hug) dmp g (Hu) dimg 6 (Ug)
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for f € C.(H\G). For the following, it will be useful to keep the diagram
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of the quotients we can take in mind. The quantity we are interested in - the number of
primitive integer vectors in R? \ {0} = U\G, is given by the orbit of U € U\G along the
action of I' (cf. the first half of todays talk).

Proposition 1. Let r > 0 and define the map
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Jor v — o0 in the weak-star topology. In the above, mp\q is the finite G-invariant measure
on T\G induced by my and my\q-

Note that F,.(I") gives us exactly what we are looking for, but it is helpful to examine
the map as defined above.

Proof. Let f € C.(I'\G) be any function. Let w(I'g) := V,"!f(I'g) be the weight of
each |e2I'g N B, (0)| in the integral. Recall that eoI' = I'/T's and the isomorphism sends
['wh — e2h, therefore, we can make the following decomposition:

[ Frdmpg = /F w(T'g) Z 1BT(0)(62h9) de\G(FQ)
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The inner sum is effectively an integral over I's,\I', such that the above formula is a

disintegration over ', \G. Since I'ny < U < G, we can change the quotient and fiber we

integrate over!, i.e.

f - Fydmpyg = / w(T'ug)L, (o) (€29) dmp_\o (Toot)) dmn (Ug)
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Now take g € G. Using the notation and decomposition from part I, we have |eag| =
lle2a(g)|| = exp(ty/2). Let € > 0 and choose, by using equidistribution, 7. > 0 such that

1
t/ FPusg)ds e [ fameg| < (1)

whenever t, > T,. Set r. = exp(7:/2), and denote

1
K(ri,m2) :={Ug : r1 <exp(ty/2) < ra}, I(g) := Vrl/o f(Tusg) ds

such that whenever r > r., the previous integral can be written as
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By our choice of r. and the inequality (1), the second integral satisfies
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On the other hand,
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for r — oo, as V,7! — 0. Since ¢ > 0 was arbitrary, we are done. O

We are still left with the task to derive a counting statement from the above average.
The following lemmas derive the concrete answer to our problem of counting primitive
integer vectors.

Lemma 1. For r € R, let B, := B,(0). Then
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see the aforementioned notes, especially Corollary 3 for some subtleties we skip over here

F.(T) := F..(T) = eI’ N B,




Proof. Let € > 0 and choose § > 0 such that

~
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for all » > 1. We now construct a symmetric open neighborhood V' C G of the identity
such that B,V C B,.s holds for all » > 1. Indeed, recall the KAK—decompositioAn from
part I and set V' := K{a; : |[t| < 20} K. Then, for any ¢ = ka;l € V and v € B,, one

has ||vg|| = ||vka:]| < exp(]t|/2)||v|| < exp(r 4+ ¢) by making use of the orthogonality of
k,le K.
Now take any g € V and calculate
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If we now have some non-negative ¢ € C.(I'\G) with integral 1, support contained in I'V
(which is an open neighborhood of I') and which does not vanish at I', we observe that

=~ fa Prop. 1 1
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On the other hand, we can repeat the same argument as above backwards, obtaining the
inequality F,.(T') > F,_5(I'g)/(1 4+ ¢) for all » > 1 + ¢, such that
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By sending ¢ — 0, we squeeze the value of F, (T"). Since the behaviour of F, is the same
as that of F, as we send r — oo, the proof is complete. O

The following lemma completes our counting.

Lemma 2. For our choice of normalization of the Haar measure, we have

2

vol(N\G) = -

Proof. From previous talks, we know that G acts transitively on the upper half plane H,
and that for f € C.(G),

A(f) = /H /K £(gk) dmic (k) dms(g - )

defines a Haar measure on G = SLa(R) (recall that Stabg (i) = K = SO2(R)). Note the
use of the hyperbolic area measure dmy = y~2 da dy. Uniqueness of the Haar measure up

to constants implies that there is C' > 0 such that for all f € C.(G) we have

A(f)=C /U . /U f(ug) dimgs (u) dmga (Ug) (2)
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since the above disintegration also defines a Haar measure on G (recall that U\G =
R2\ {0}). Now set

E={zeH:|z| >1,Re(z) € [-1/2,1/2]}
F=T'Ex {usatk €Gise[-1/21/2, et >V1—s2 ke K}

which is the usual fundamental domain for I'\ G, at least up to a set of measure zero. Since
F' is invariant under the action of SO3(R), we have

A(1p) = 27?/ 1p dmy = 2mmy(F)
H

and we calculate
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resulting in A1(1r) = 272/3. It remains to calculate the multiplicative constant C' in
equation (2). For this, we simply compare the value of A; and Ay := C~'A; on the
indicator function of

A=T"Y2 €H:Re(z) €[0,1/2],Im(z) > 1} = {usask € G : s € [0,1/2],t <0,k € K}

which is a subset of F' and therefore injective. Then

1/2 00 1
Al(lA)_27T/ / —dydz =
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Ag(lA) = §V01(Bl(0)) = 5

meaning C' = 2, and thus vol(T'\G) = Ay(1r) = 72/3. O
Finally, our result is
r—00 w2
F.(T') — 3|




