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Preface

These notes are very heavily based on those from Manuel Luethi from a couple of semesters
ago. You can find them at https://metaphor.ethz.ch/x/2018/fs/401-3370-67L/sc/
primitive.pdf.

Counting

We shall very often make use of the concept of disintegration. If we have a chain of
unimodular (sub)groups H ≤ U ≤ G, then integration over H\G can be understood as
first going over the quotient U\G and then the fibers H\U , that is,∫

H\G
f(Hg) dmH\G(Hg) =

∫
U\G

∫
H\U

f(Hug) dmH\U (Hu) dmU\G(Ug)

for f ∈ Cc(H\G). For the following, it will be useful to keep the diagram

Γ∞\G

U\G Γ\G

of the quotients we can take in mind. The quantity we are interested in - the number of
primitive integer vectors in R2 \ {0} ∼= U\G, is given by the orbit of U ∈ U\G along the
action of Γ (cf. the first half of todays talk).

Proposition 1. Let r > 0 and define the map

Fr : Γ\G → R, Fr(Γg) :=
1

vol(Br(0))
|e2Γg ∩Br(0)| = V −1

r |e2Γg ∩Br(0)|.

Then

Fr dmΓ\G → 1

vol(Γ\G)
dmΓ\G =

vol(Γ∞\U)

vol(Γ\G)
dmΓ\G

for r → ∞ in the weak-star topology. In the above, mΓ\G is the finite G-invariant measure
on Γ\G induced by mU and mU\G.

Note that Fr(Γ) gives us exactly what we are looking for, but it is helpful to examine
the map as defined above.

Proof. Let f ∈ Cc(Γ\G) be any function. Let w(Γg) := V −1
r f(Γg) be the weight of

each |e2Γg ∩Br(0)| in the integral. Recall that e2Γ ∼= Γ/Γ∞ and the isomorphism sends
Γ∞h 7→ e2h, therefore, we can make the following decomposition:∫

Γ\G
f · Fr dmΓ\G =

∫
Γ\G

w(Γg)
∑

Γ∞h∈Γ∞\Γ

1Br(0)(e2hg) dmΓ\G(Γg)

1



The inner sum is effectively an integral over Γ∞\Γ, such that the above formula is a
disintegration over Γ∞\G. Since Γ∞ ≤ U ≤ G, we can change the quotient and fiber we
integrate over1, i.e.∫

Γ\G
f · Fr dmΓ\G =

∫
U\G

∫
Γ∞\U

w(Γug)1Br(0)(e2g) dmΓ∞\U (Γ∞u) dmU\G(Ug)

=

∫
U\G

1Br(0)(e2g)

(∫
Γ∞\U

w(Γug) dmΓ∞\U (Γ∞u)

)
dmU\G(Ug)

= V −1
r

∫
U\G

1Br(0)(e2g)

(∫ 1

0
f(Γusg) ds

)
dmU\G(Ug).

Now take g ∈ G. Using the notation and decomposition from part I, we have ∥e2g∥ =
∥e2a(g)∥ = exp(tg/2). Let ε > 0 and choose, by using equidistribution, Tε > 0 such that∣∣∣∣∣

∫ 1

0
f(Γusg) ds−

1

vol(Γ\G)

∫
Γ\G

f dmΓ\G

∣∣∣∣∣ < ε (1)

whenever tg > Tε. Set rε = exp(Tε/2), and denote

K(r1, r2) := {Ug : r1 < exp(tg/2) < r2}, I(g) := V −1
r

∫ 1

0
f(Γusg) ds

such that whenever r > rε, the previous integral can be written as∫
K(0,r)

I(g) dmU\G(Ug) =

∫
K(0,rε)

I(g) dmU\G(Ug) +

∫
K(rε,r)

I(g) dmU\G(Ug).

By our choice of rε and the inequality (1), the second integral satisfies∫
K(rε,r)

I(g) dmU\G(Ug) ≈ vol(K(rε, r))

vol(Br(0))

(
1

vol(Γ\G)

∫
Γ\G

f dmΓ\G + ε

)
r→∞−→ 1

vol(Γ\G)

(∫
Γ\G

f dmΓ\G + ε

)
.

On the other hand, ∫
K(0,rε)

I(g) dmU\G(Ug) → 0

for r → ∞, as V −1
r → 0. Since ε > 0 was arbitrary, we are done.

We are still left with the task to derive a counting statement from the above average.
The following lemmas derive the concrete answer to our problem of counting primitive
integer vectors.

Lemma 1. For r ∈ R, let B̂r := Ber(0). Then

F̂r(Γ) := Fer(Γ) =
1

vol(B̂r)

∣∣∣e2Γ ∩ B̂r

∣∣∣ r→∞−→ 1

vol(Γ\G)
.

1see the aforementioned notes, especially Corollary 3 for some subtleties we skip over here

2



Proof. Let ε > 0 and choose δ > 0 such that

vol(B̂r+δ)

vol(B̂r)
= exp(2δ) < 1 + ε

for all r ≥ 1. We now construct a symmetric open neighborhood V ⊂ G of the identity
such that B̂rV ⊆ B̂r+δ holds for all r ≥ 1. Indeed, recall the KAK-decomposition from
part I and set V := K{at : |t| < 2δ}K. Then, for any g = katl ∈ V and v ∈ B̂r, one
has ∥vg∥ = ∥vkat∥ ≤ exp(|t|/2)∥v∥ < exp(r + δ) by making use of the orthogonality of
k, l ∈ K.

Now take any g ∈ V and calculate

F̂r+δ(Γg) =
1

vol(B̂r+δ)

∣∣∣e2Γg ∩ B̂r+δ

∣∣∣
=

1

vol(B̂r+δ)

∣∣∣e2Γ ∩ B̂r+δg
−1
∣∣∣ g is bijection on R2 \ {0}

≥ 1

vol(B̂r+δ)

∣∣∣e2Γ ∩ B̂r

∣∣∣ construction of V

>
1

(1 + ε) vol(B̂r)

∣∣∣e2Γ ∩ B̂r

∣∣∣ choice of δ

=
1

1 + ε
F̂r(Γ).

If we now have some non-negative φ ∈ Cc(Γ\G) with integral 1, support contained in ΓV
(which is an open neighborhood of Γ) and which does not vanish at Γ, we observe that

F̂r(Γ) ≤ (1 + ε)

∫
Γ\G

F̂r+δ(x)φ(x) dx
Prop. 1−→ (1 + ε)

1

vol(Γ\G)
for r → ∞.

On the other hand, we can repeat the same argument as above backwards, obtaining the
inequality F̂r(Γ) > F̂r−δ(Γg)/(1 + ε) for all r > 1 + δ, such that

F̂r(Γ) ≥
1

1 + ε

∫
Γ\G

F̂r+δ(x)φ(x) dx
Prop. 1−→ 1

1 + ε

1

vol(Γ\G)
for r → ∞.

By sending ε → 0, we squeeze the value of F̂r(Γ). Since the behaviour of F̂r is the same
as that of Fr as we send r → ∞, the proof is complete.

The following lemma completes our counting.

Lemma 2. For our choice of normalization of the Haar measure, we have

vol(Γ\G) =
π2

3
.

Proof. From previous talks, we know that G acts transitively on the upper half plane H,
and that for f ∈ Cc(G),

Λ1(f) =

∫
H

∫
K
f(gk) dmK(k) dmH(g · i)

defines a Haar measure on G = SL2(R) (recall that StabG(i) = K = SO2(R)). Note the
use of the hyperbolic area measure dmH = y−2 dx dy. Uniqueness of the Haar measure up
to constants implies that there is C > 0 such that for all f ∈ Cc(G) we have

Λ1(f) = C

∫
U\G

∫
U
f(ug) dmU (u) dmR2(Ug) (2)
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since the above disintegration also defines a Haar measure on G (recall that U\G ∼=
R2 \ {0}). Now set

E = {z ∈ H : |z| ≥ 1,Re(z) ∈ [−1/2, 1/2]}

F = T 1E ∼=
{
usatk ∈ G : s ∈ [−1/2, 1/2], e−t ≥

√
1− s2, k ∈ K

}
which is the usual fundamental domain for Γ\G, at least up to a set of measure zero. Since
F is invariant under the action of SO2(R), we have

Λ1(1F ) = 2π

∫
H
1E dmH = 2πmH(E)

and we calculate

mH(E) =

∫ 1/2

−1/2

∫ ∞

√
1−x2

1

y2
dy dx = 2arcsin

(
1

2

)
=

π

3

resulting in Λ1(1F ) = 2π2/3. It remains to calculate the multiplicative constant C in
equation (2). For this, we simply compare the value of Λ1 and Λ2 := C−1Λ1 on the
indicator function of

A = T 1{z ∈ H : Re(z) ∈ [0, 1/2], Im(z) ≥ 1} = {usatk ∈ G : s ∈ [0, 1/2], t ≤ 0, k ∈ K}

which is a subset of F and therefore injective. Then

Λ1(1A) = 2π

∫ 1/2

0

∫ ∞

1

1

y2
dy dx = π

Λ2(1A) =
1

2
vol(B1(0)) =

π

2

meaning C = 2, and thus vol(Γ\G) = Λ2(1F ) = π2/3.

Finally, our result is

Fr(Γ)
r→∞−→ π2

3
.
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