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1. Introduction

In the previous talk, we have found a counting result for primitive integer vectors,
that is, we have calculated the density of {( xy ) | gcd(x, y) = 1} in R2. These notes
generalize this results by replacing the concrete groups from last week by more
abstract groups that satisfy some desired properties.

1.1. The base spaces. Before we can explain the problem, we need to introduce
the spaces involved and compare them to the special case of last week’s talk. Let
G be an unimodular group, H < G a closed unimodular subgroup, and let Γ be a
lattice of G such that G ∩H is a lattice of H. The groups G and H are equipped
with some Haar measures mG, mH . For Γ and Γ∩H we use the counting measure
as Haar measure.

Last week’s talk on counting primitive integer vectors was a special case of this
talk. In the last talk, G was SL2(R), Γ was SL2(Z), and H was {( 1 t

0 1 ) | t ∈ R}

1.2. The quotient spaces. We are also interested quotients of those spaces such
as G/H and G/Γ. Since we did not require H and Γ to be normal subgroups of
G, those quotient spaces might not be groups. Therefore we also do not have a
operation that maps two elements g1H, g2H ∈ G/H to their product (g1H)(g2H) =
(g1g2)H (and similarly for the other quotient spaces). We can, however, multiply
elements of G with elements of the quotient space: The product of g1 ∈ G and
g2H ∈ G/H would be given as g1(g2H) = (g1g2)H ∈ G/H.

For simplicity, we will sometimes use the notation X = G/Γ and Y = H/H ∩ Γ.
The quotient spaces can be be equipped with compatible measures. In the case

of G/H, this means that for all f ∈ L1
mG

(G), it holds that∫
G/H

∫
H

f(gh)dmH(h)dmG/H(gH) =

∫
G

f(g)dmG(g).

In words, an integral over the entire space G can be calculated by integrating first
over the subgroup H and then over the quotient G/H. Similar formulas hold for
all other quotient spaces that we’re working with.

Additionally we will assume that the translated H-orbits gHΓ equidistribute in
G/Γ (we will later explain this property in greater detail). We will then count the
point set gΓH in the space G/H.

In last week’s talk, the quotient space G/H = SL2(R)/SL2(Z) turned out to

be equivalent to R2 \ ( 00 ), and the set gΓH corresponded to the primitive integer
vectors.

Here we should also note the difference between gΓH and gHΓ. The former
is a subset of G/H. It is a Γ-orbit (i.e. the set {gγ | γ ∈ Γ}) in G, projected
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onto the quotient space G/H, and it is the object that we want to count. On the
other hand, gHΓ is a subset of G/Γ, and it is the object for which we require the
equidistribution property.

2. Dynamical Assumption on X

In the general setting the equidistribution has to be made into an assumption.
In the case of the hyperbolic plane this would correspond to the Theorem about
equidistribution of the horocycle flow.

In particular we need the following equidistribution assumption:
the translated H-orbits gHΓ equidistribute in X = G/Γ
as gH → ∞ in G/H. Note that a sequence of elements is defined to go to infinity

if it eventually escapes every compact set.
Stated more rigorously this means: For all α ∈ Cc(X) we have

(1)
1

mY (Y )

∫
Y

α(ghΓ) dmY
gH→∞−−−−−→ 1

mX(X)

∫
X

α(x) dmX(x).

One can think of this as stating that integrating along the orbit will yield the
same value as integrating over the area since the orbit ”paints” the area in uniform
density.

This assumption will be enough to prove a weak version of out desire result which
will be an important intermediate step.

3. Averaged Counting Result

Let {Bt ⊂ G/H | t ∈ R} be a collection of subsets each with finite Haar-measure
such that mG/H(Nt) → ∞ as t → ∞. We will call these subsets balls, but note
that this term is unrelated to the balls we know from metric spaces.

We define a modified orbit counting function Ft : X → R≥0 that measures the
density of translated lattice points inside the balls Bt ⊆ G/H.

Ft(gΓ) =
1

mG/H(Bt)
|gΓH ∩Bt|

We want to find the asymptotic behavior of of Ft as t → ∞.
For now we will prove weak* convergence. In particular this means that for

α ∈ Cc(X) the following hold.∫
X

Ft(x)α(x) dmX
t→∞−−−→ mX(X)

mY (Y )

∫
X

α(x) dmX

The core idea of the proof is to apply the folding/unfolding trick to integral. We
want to traverse the groups as follows.

G/(Γ ∩H)

G/Γ · Γ/(H ∩ Γ) G/H ·H/Γ ∩H



THE METHODS OF DUKE-RUDNICK-SARNAK AND ESKIN-MCMULLEN 3

Let’s start by writing down the integral.∫
X

Ft(x)α(x) dmX =

∫
X

Ft(gΓ)α(gΓ) dmX(gΓ)

=
1

mG/H(Bt)

∫
X

|gΓH ∩Bt|α(gΓ) dmX

We can now rewrite the carnality of this (finite) set as a sum over the indicator
function of Bt. The sum then is simply the integral with respect to the counting
measure.

=
1

mG/H(Bt)

∫
G/Γ

∑
γ∈Γ/(Γ∩H)

[1Bt
(gγH)]α(gΓ) dmX(gΓ)

=
1

mG/H(Bt)

∫
G/Γ

∫
Γ/(Γ∩H)

1Bt
(gγH)α(gΓ) dmΓ/(Γ∩H)(γ) dmX(gΓ)

Now we apply disintegration and do the folding/unfolding trick.

=
1

mG/H(Bt)

∫
G/(Γ∩H)

1Bt
(gH)α(gΓ) dmG/(Γ∩H)(g(Γ ∩H))

=
1

mG/H(Bt)

∫
G/H

1Bt
(gH)

∫
H/(Γ∩H)

α(ghΓ) dmY (hΓ) dmG/H(gH)

Finally we simply change the integral with an indicator function to be simply an
integral over Bt.

=
1

mG/H(Bt)

∫
Bt

∫
Y

α(ghΓ) dmY (hΓ) dmG/H(gH)

We now notice that this looks almost like the equidistribution assumption we
made earlier. The only difference is that here we have an additional averaging over
Bt.

To see that this convergence also holds with the additional averaging we only

need the additional assumption that mG/H(Bt)
t→∞−−−→ ∞. Note that compact sets

have finite Haar-measure, therefore it can’t be the case that all Bt are contained in
a compact set since their measure is unbounded. Finally we get

1

mY (Y )mG/H(Bt)

∫
Bt

∫
Y

α(ghΓ) dmY (hΓ) dmG/H(gH)

t→∞−−−→ 1

mX(X)

∫
X

α(x) dmX(x)

which is exactly the desired result.

4. Interlude: Some intuition

The previous section contained a lot of calculations. They aren’t particularly
hard per se, but it isn’t obvious on first glance what we actually did. We will now
provide a more intuitive—albeit incomplete—explanation of what we did previously
as well as what we will do in the next section. For this, we will often refer to the
example from the previous talk where we wanted to count the primitive integer
vectors in R2.
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Remember that we want to calculate, in some sense, the “density” of gΓH in
G/Γ. Since there is no clear meaning of the density of infinitely many points in
an infinitely large space, we define this “density” as the limit of the density within
some sequence of finite subsets whose size tends to infinity.

It turns out (this will be shown in the next section) that, as long as we take a
somewhat “reasonable” sequence of balls, this limit of densities will be independent
of the exact sequence of balls that we choose. To better understand both the
previous and the next section, we will now look at two kinds of “unreasonable”
sequences of balls.

Firstly, we may force an artficially high density by intentionally having our balls
hit many of the points that we want to count. In the case of primitive integer
vectors, such balls might look like in figure 3. Secondly, we may force an artificially
low density by intentionally avoiding lattice points. This can be seen in figure 2

Figure 1. An ball containing an artificially high amount of lattice
points. The black dots are the primitive integer vectors. Note that
the entire green area is a single ball.

The previous section solved this problem by not taking the density of the balls
themselves, but instead by taking a weighted average of slightly translated balls (to
be precise, the theorem does not in any way require that the balls are translated by
only a small amount, but this is the “interesting” or “important” case). Figure ??
shows the ball from figure 3 translated by various small elements of G = SL2(R).
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Figure 2. An ball containing an artificially low amount of lattice
points. The black dots are the primitive integer vectors. Again,
the ball is the green area.

Note that “translating” by some g just means multiplication of the points of the
ball with that g and in this case does not correspond to the geometric concept of
translation.

Figure ?? only shows a few discrete translations. In reality, we would have a
continuum of translations, and taking the average of all those translations would
be akin to blurring the edges of the ball. This is shown in 4.

In this special case of the primitive integers, we can see that points far away
from the origin are more affected by this blurring. This can be used as an intuitive
explanition for why, as the ball grows in size, the blurred ball covers an increasingly
representative area of the entire space. This means that the limit of densities of
the blurred balls will give us the correct density. To rigorously show this (and
also to cover our more general case), we didn’t use the fact that distant points are
more affected by translation but instead argued with the equidistribution property.
Altough slightly less intuitive, it still seems plausible that this property guarantees
that the blurred balls will eventually cover a sufficiently representative area to find
the correct density.

The next section relies on the same intuition. However, we will no longer blur
the balls with an integral. Instead, this blurring is already encoded in our sequence
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Figure 3. The ball from figure 3 (green), translated by various
elements of G = SL2(R). The translated balls are shown as red
outlines.

of balls. Namely, we will require that if we blur the ball Bt, the result must be
contained in the slightly larger ball Bt+δ.

This condition will not quite suffice: We can still break the theorem by expanding
our ball in an “unreasonable” way faster than the blurring makes it “reasonable”.
For example, we could still add artificially dense parts of the space (like in figure
3), we just have to add them faster than the blurring takes effect. To avoid this,
we will need an additional condition that bounds the relative growth of the balls.

5. (Non-averaged) counting result

We will now implement what we’ve discussed at the end of the last chapter in a
more rigorous manner. We have mentioned that we want some additional properties
for the sequence of balls {Bt | t ∈ R}. We want the sequence to be well-rounded,
which means that

(i) mG/H(Bt) → ∞ as t → ∞
(ii) For every ε > 0 there exists a δ > 0 such that for all t ≥ 0 we have

mG/H
(Bt+δ)

mG/H
(Bt)

< 1 + ε.
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Figure 4. The ball from figure 3, “blurred”. The color indicates
how strongly each point is weighted.

(iii) For every δ > 0 there exists a neighborhood U of the identity in G such that
for every t ≥ 0 we have ⋃

g∈U

gBt ⊆ Bt+δ

We can then show the following counting result:

Lemma 2. Assuming all the previous conditions, we have

lim
t→∞

1

mG/H

|ΓH ∩Bt| =
mH/Γ∩H

(
H/Γ ∩H

)
mG/Γ(

G/Γ)

Proof. Choose some ε > 0, then choose δ as in (ii), then choose U as in (iii). We
may assume WloG that U = U−1 :=

{
u−1 | u ∈ U

}
: Otherwise, use U ∩ U−1 as

our new value for U .
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For any g ∈ U , we now have

Ft+δ(gΓ)
def
=

1

mG/H(Bt+δ)
|gΓH ∩Bt+δ|

=
1

mG/H(Bt+δ)
|ΓH ∩ g−1Bt+δ︸ ︷︷ ︸

⊇Bt

|

≥
mG/H(Bt)

mG/H(Bt+δ)

1

mG/H(Bt)
|ΓH ∩Bt|

(ii)

≥ 1

1 + ε

1

mG/H(Bt)
|ΓH ∩Bt|

Now let α ∈ Cc(G/Γ) be an approximate identity at the identity coset, meaning
that α is nonnegative, its total integral is∫ α

G/Γ

(gΓ)dmG/Γ(gΓ) = 1

, and the support of α is contained in UΓ.
We multiply the above inequality by α, integrate, and take limits.

lim
t→∞

1

mG/H(Bt)
|ΓH ∩Bt| = lim

t→∞

∫
G/H

1

mG/H(Bt)
|ΓH ∩Bt|α(gΓ)dmG/Γ(gΓ)

≤ lim
t→∞

(1 + ε)

∫
G/Γ

Ft+δ(gΓ)α(gΓ)dmG/Γ(gΓ)

= (1 + ε)
mH/Γ∩H(H/Γ ∩H)

mG/Γ(G/Γ)

We get the first equality by taking constants out of the integral and remembering
that the total integral of α is one. The inequality was taken from the previous
calculation (after multiplying by α, integrating, and taking limits). Finally, the
last equality is the averaged counting result.

If we let ε approach zero, we get

lim
t→∞

1

mG/H

|ΓH ∩Bt| ≤
mH/Γ∩H

(
H/Γ ∩H

)
mG/Γ(

G/Γ)
.

By starting our calculations with Ft−δ(gΓ) instead of Ft+δ(gΓ), we get the inverse
inequality, and the two inequalities together give us the equality that we wanted to
show. □


