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1 Introduction

This paper aims to give an introduction and few findings to the Gauss circle problem, named
after the German mathematician Johann Carl Friedrich Gauss for being the first one to make
significant progress on a solution (1834). The problem is the following:
Given a circle of radius R ≥ 0 in R2 and centered at the origin, the goal is to find the number
of lattice points defined by N(R) inside of it, in other words, try to find B0(R) ∩ Z2. Here are
the first values of N(R) for R an integer between 0 and 12.

R N(R)
0 1
1 5
2 13
3 29
4 49
5 81
6 113
7 149
8 197
9 253
10 317
11 377
12 441

First results showed that N(R) was approximately equal to the area of the circle πR2, which
can indeed be observed with the table above. There is however an error term depending on the
radius of the circle and defined by E(R), which is actually the very core of this problem and for
which Gauss found a first upper bound: |E(R)| ≤ 2

√
2πR. There has been since then a lot of

new and more accurate approximations for this bound, the error being initially in the form of
O(Rθ), mathematicians have been trying to minimise θ (Gauss showed E(R) = O(R)), but the
English Godfrey Harold Hardy found in 1915 a lower bound for it being 1/2. As for the upper
bound, many found smaller and smaller ones throughout the XXth century, the period ending
with british Martin Neil Huxley finding the best known bound until then, 131/208 ≈ 0.6298
(2000). Although it is conjectured that the correct error is |E(R)| = O(R1/2+ϵ) for any ϵ > 0, the
best improvement on the upper bound we have today is still ”far off” this result and attributed to
belgian Jean Bourgain and English Nigel Watt (whose Ph.D. advisor was Huxley!), they found
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in 2017 that θ = 517/824 + ϵ for any ϵ > 0. It is interesting to note that this improvement is
very recent and the topic is still well studied today, all we know is 1/2 < θ ≤ 517/824 ≈ 0.6274,
so there will probably still be quite some work to do before being able to prove the conjecture.

Our goal throughout this paper will be to first prove that E(R) = O(R) and then E(R) =
o(R) (implying N(R) = πR2 + o(R)). In order to show the latter, we will need a proposition
that we will prove as well.

2 Background

To understand the following, it is advised to have basic knowledge of analysis (be familiar with
the Landau notation, limits, definition of the Riemann integral, parametrized curves, continuity,
density, taylor expansions), linear algebra (basis, orthogonality) and measure theory (measure
space, null set).
We will also need a few objects from differential geometry but their exact meaning is not
relevant for this paper, we define them here:

T1R2 = {(x, v) : x ∈ R2, v ∈ R2, ||v|| = 1} = R2 × S1

is the unit tangent bundle of R2 and

T1T2 = {(x, v) : x ∈ T2, v ∈ R2, ||v|| = 1} = T2 × S1

is the unit tangent bundle of T2.
Here S1 is the unit circle in the plane and T2 = R2/Z2 is the torus in the space.

3 Main Results

3.1 Proposition 5.1

For any R > 0 let
N(R) = |{n ∈ Z2 : ||n|| ≤ R}|

then
N(R) = πR2 +O(R).

In this section we will show that the error term as defined in the introduction is O(R), i.e.
the error term grows at most as fast as R when R goes to infinity.

PROOF: To prove this first result, we need to define the unit square S beforehand. Let
us consider S = [−1

2
, 1
2
) × [−1

2
, 1
2
), then S + {n ∈ Z2 : ||n|| ≤ R} := G represents all the unit

squares whose center is a lattice point inside a circle of radius R (see Figure 1: the blue square
is S shifted by (-2,-1) ∈ {n ∈ Z2 : ||n|| ≤ R}, assuming R big enough for the purpose of the
representation in the figure) , hence there are as many squares as there are lattice points inside
the circle and the sum of areas of all these squares (each has area 1) is exactly equal to the
sum of lattice points that we are interested in (N(R)).
The trick here is to consider two other circles: one smaller of radius R− 1/

√
2 and one bigger

of radius R + 1/
√
2, it is clear that any point inside the smaller circle is contained in G as by
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diminishing the radius by half the diagonal of a square, we make sure that any point in G that
is not in BR(0) now is in BR−1/

√
2(0). For analogous reasons, any point in G is contained inside

the bigger circle (see Figure 1). Therefore

BR−1/
√
2(0) ⊆ G ⊆ BR+1/

√
2(0)

and by taking areas (as explained above the area of the grid G is exactly N(R))

(R− 1√
2
)2π ≤ N(R) ≤ (R +

1√
2
)2π

which allows us to conclude N(R) = πR2 +O(R) as we wanted.

Figure 1: The grid G enclosed by BR−1/
√
2(0) and BR+1/

√
2(0)

3.2 Proposition 5.2

Let
γR : [0, 1] −→ T1R2

t 7−→
(
Re2πit, e2πit

)
be the constant speed parametrization of the outward tangent vectors on the circle of

radius R. Then ∫ 1

0

f (γR(t)) dt →
∫
T1T2

f(x, v)d(x, v)

as R → ∞, for every f ∈ C(T1T2).

In this section we will prove an integral transformation result that we will need to show the
most important result we will discuss in this paper, namely Theorem 5.3 in the next section.

3



PROOF: The first thing to notice here is that γR is constituted of two circles, one of ra-
dius R in the first component and a unit circle in the second component. As t goes from 0
to 1, γR(t) = (Re2πit, e2πit) := (xR(t), v(t)) passes through all directions with constant speed
so that the only real thing we have to show is that the positional part xR(t) restricted to any
subinterval [α, β] ⊆ [0, 1] equidistributes on T2 as R goes to infinity.
Recall that equidistribution here means that the distribution of xR(t) is homogeneous in the
sense that the quantity of points in any subinterval (or in general measurable subset with respect
to Jordan measure1) of the considered interval (measurable set) is proportional to its length
(measure). Typically, in a discrete setting (for a sequence), a good way to check for equidis-
tribution is to verify the given sequence can be applied on a sum as a sample to calculate
the integral of any Riemann-integrable function. Concretely, if (xn)n∈N is the aforementioned
sequence with xn ∈ X, where X is a measurable set w.r.t. the Jordan measure, we want to
verify:

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
X

f(x)d(x)

for every Riemann-integrable function f : X → C. However, in a continuous setting such as
here with xR(t), the analogue is to check the above equality with an integral on the left hand
side instead of a sum and for any continuous f . Concretely, what we want to show is

1

β − α

∫ β

α

f(xR(t))dt →
∫
T2

f(x)d(x) (*)

as R → ∞ ∀f ∈ C(T2).

Indeed, if we manage to show the above, we could split the interval [0,1] into subintervals[
0,

1

n

]
∪
[ 1
n
,
2

n

]
∪ . . . ∪

[n− 1

n
, 1
]

and use the continuity of f ∈ C(T1T2) together with the equidistribution of xR(t) to conclude
that

lim
R→∞

∫ 1

0
f (γR(t)) dt = lim

R→∞

n−1∑
j=0

∫ (j+1)/n

j/n

f(xR(t), e
2πit)dt

(1)
= lim

n,R→∞

n−1∑
j=0

∫ (j+1)/n

j/n

f(xR(t), e
2πij/n)dt

= lim
n,R→∞

1

n

n−1∑
j=0

1

(1/n)

∫ (j+1)/n

j/n

f(xR(t), e
2πij/n)dt

(2)
= lim

n→∞

1

n

n−1∑
j=0

∫
T2

f(x, e2πij/n)d(x)

= lim
n→∞

∫
T2

1

n

n−1∑
j=0

f(x, e2πij/n)d(x)

(3)
=

∫
T1T2

f(x, v)d(x, v)

1According to wikipedia (Peano-Jordan measure): ”In mathematics, the Peano-Jordan measure, also known
as Jordan content, is an extension of the notion of size (lenght, area, volume) to shapes more complicated than,
for example, a triangle, disk, or parallelepiped.”
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where (1) comes from the uniform continuity (continuous on compact interval) of the function
g : [0, 1] → T1R2 defined as g(s) := f(xR(t), e

2πis) ∀t ∈ [0, 1]. Indeed, the uniform continuity
implies ∀ϵ < 0 ∃δ < 0 such that ∀s ∈ [j/n, (j + 1)/n]

|s− j/n| < δ =⇒ |g(s)− g(j/n)| < ϵ.

As n → ∞, |s−j/n| ≤ |(j+1)/n−j/n| = 1/n → 0 and we are just left with |g(s)−g(j/n)| < ϵ
for any ϵ < 0, which means

g(s) = g(j/n) ⇐⇒ f(xR(t), e
2πis) = f(xR(t), e

2πij/n).

(2) simply comes from the equidistribution argument we claimed earlier with [α, β] =
[j/n, (j + 1)/n] and (3) comes from the definition of the Riemann integral as e2πij/n clearly
is equidistributed over S1, so

lim
n→∞

1

n

n−1∑
j=0

f(x, e2πij/n) =

∫
S1
f(x, v)d(v)

and together with the integral over T2, we obtain an integral over T2 × S1, which is exactly
T1T2.

Thus, it just remains to prove the claim (*) of the equidistribution of xR(t). To prove this,
notice that the set of functions

en(x) = e2πi(n1x1+n2x2)

is dense in C(T2) (recall Fourier series in R/Z), meaning any f ∈ C(T2) can be expressed as
a linear combination of en’s. Hence, thanks to linearity of the integral, we just have to show
equidistribution for functions en.
This trivially holds for n = (0, 0) since e0(x) = 1 so the left hand side is 1 and the right hand
side as well (for example write T2 as S1 × S1 and easily find 1 for the decomposed integral).
Let us now focus on the case where n ̸= (0, 0) and fix n as such.

First of all, without loss of generality, we may assume that n is never orthogonal to[
−sin(2πt)
cos(2πt)

]
for t ∈ [α, β]. This assertion will reveal its purpose a bit later in the proof. To see it, let
(tm)

M
m=0 ⊆ [α, β] be the set of points where the assumption fails and assume, again w.l.o.g.,

that tm is increasing. This set is finite since there cannot be infinitely many points in [α, β] for
which the above vector is orthogonal to n. We can then we split the interval into finitely many
subintervals

[α, β] = [α, t0) ∪ (t0, t1) ∪ . . . ∪ (tM , β] ∪
M⋃

m=0

{tn}

and notice that the last set of points is a null set and has therefore no impact on the process
so that we may proceed with applying the non-orthogonality argument on each subinterval
written above (if the equidistribution in (*) holds for any such subinterval, it also does for the
entire interval). For that very reason, let’s assume

|n ·
[
−sin(2πt)
cos(2πt)

]
| = | − n1sin(2πt) + n2cos(2πt)| ≥ κ
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for some κ > 0 and all t ∈ [α, β].

Secondly, we split the interval [α, β] into m = ⌊R3/4⌋ subintervals

[α1, α2] ∪ [α2, α3] ∪ . . . ∪ [αm, αm+1]

with αj = α + (j − 1)β−α
m

. By the Taylor expansion (around αj) we have

xR(t) = R

[
cos(2πt)
sin(2πt)

]
= R

([
cos(2παj)
sin(2παj)

]
+ (t− αj)2π

[
−sin(2παj)
cos(2παj)

]
+O

(
1

m2

))
= R

[
cos(2παj)
sin(2παj)

]
+R(t− αj)2π

[
−sin(2παj)
cos(2παj)

]
+O

(
1

R1/2

)
for all t ∈ [αj, αj+1] and j = 1, ...,m. As n ̸= 0 is fixed and R → ∞, this gives∣∣∣∣ 1

β − α

∫ β

α

en(xR(t))dt

∣∣∣∣ =
∣∣∣∣∣ 1

β − α

m∑
j=1

∫ αj+1

αj

en

(
R

[
cos(2παj)
sin(2παj)

]
+R(t− αj)2π

[
−sin(2παj)
cos(2παj)

])∣∣∣∣∣+ o(1)

≤ 1

β − α

m∑
j=1

∣∣e2πiR[n1(cos(2παj)+2παjsin(2παj))+n2(sin(2παj)−2παjcos(2παj))]
∣∣

∣∣∣∣∣
∫ αj+1

αj

e4π
2iRt(−n1sin(2παj)+n2cos(2παj)dt

∣∣∣∣∣+ o(1)

=
1

β − α

m∑
j=1

∣∣∣∣∣
∫ αj+1

αj

e4π
2iRt(−n1sin(2παj)+n2cos(2παj))dt

∣∣∣∣∣+ o(1)

≤ 1

β − α

m∑
j=1

2

4π2R| − n1sin(2παj) + n2cos(2παj)|
+ o(1)

Here, we finally see the purpose of our assumption on the non-orthogonality because we want
to be able to bound the denominator in the last inequality, and we can as we assumed that
| − n1sin(2παj) + n2cos(2παj)| ≥ κ. Thus we get

lim
R→∞

∣∣∣∣ 1

β − α

∫ β

α

en(xR(t))dt

∣∣∣∣ ≤ lim
R→∞

1

β − α

m∑
j=1

2

4π2Rκ
= lim

R→∞

1

β − α

2m

4π2Rκ
= lim

R→∞

1

β − α

2

4π2R1/4κ
= 0

Finally, as we wanted, we obtain 1
β−α

∫ β

α
en(xR(t))dt → 0 as R → ∞, which allows us to

conclude that (*) is true for any f ∈ C(T2) by linear combinations of functions en and ends
the proof of the proposition.

3.3 Theorem 5.3

N(R) = πR2 + o(R)

In this section we will be improving the error term. As we have seen before, Gauss proved that
we can write the error term as O(R). We will now prove that this error term can be written
as o(R), i.e. the error term grows strictly slower than R as R goes to infinity.

PROOF: In order to get this result, we will have to find a function defined on a tangent
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bundle with the property that the integral along a line segment relates with the difference
between the area calculation and the lattice point count. We will then be able to use the
equidistribution result we proved in Proposition 5.2 .
We will now define functions in the tangent bundle of S

T1S =

[
−1

2
,
1

2

)
×
[
−1

2
,
1

2

)
× S1

recall that S =
[
−1

2
, 1
2

)
×
[
−1

2
, 1
2

)
Let’s define a function h(x,v) as the area of the polygon

determined by S and the half-space with x in its boundary and v as an outward normal. If 0
is also in the polygon we subtract 1. We also characterise the line denote that goes through x
and is normal to v as L(x,v)

Figure 2: Description of the function h(x, v) and L(x, v)

Now we’ll define a function f : S × S1 → R as f(x, v) = h(x,v)
length of L(x,v)

.

Claim: f is Riemann integrable and
∫
T1T2 f d(x, v) = 0

Proof of the claim:

1. f is bounded:
h is bounded by 1

2
. If the area of the polygon is bigger than 1

2
, then 0 must also be

contained in the polygon and thus one is subtracted from the area. So if 0 is contained
in the polygon h is smaller than zero and if 0 isn’t contained in the polygon then is h
bounded by 1

2
.

The length of L is small if and only if it is close to a corner of S. In that case the polygon is a
triangle and as we can see in Figure 2 we can denote two of its sides as a and b. The length
of L can then be written as length of L(x, v) =

√
a2 + b2 and h(x, v) = a·b

2
. Then we can
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Figure 3: Description of the length of L(x, v) when its length is small

write f as f(x, v) = h(x,v)
length of L(x,v)

=
a·b
2√

a2+b2
≤ a2+b2√

a2+b2
= a2 + b2 = length of L(x, v) < ∞.

The inequality follows from (a− b)2 ≥ 0 ⇔ a2 + b2 − 2a · b ≥ 0 ⇔ a2 + b2 ≥ 2a · b ≥ a·b
2

2. The set of discontinuities is a null set:
The function f is discontinuous in the set {(x, v) | 0 ∈ L(x, v)} as one can see from Figure
3. There may be other discontinuities in the border of S. Thus the set of discontinuities
is contained in

(∂S)× S1 ∪ {(x, v) | 0 ∈ L(x, v)}

which is a null set.
This two points prove that f is Riemann integrable.

3.
∫
T1T2 f d(x, v) = 0
First notice that f(x,v)=-f(x,-v). Then we can split T1T2 = T2 × S1 into two disjoint
sets T2 × S1+ and T2 × S1− where S1− represents the lower half and S1+ represents the
upper half of the circle. Then

∫
T1T2 f d(x, v) =

∫
T2×S1+ f d(x, v) +

∫
T2×S1− f d(x, v) =∫

T2×S1+ f d(x, v)−
∫
T2×S1+ f d(x, v) = 0

Because f is Riemann integrable we know that for any ϵ > 0, there are continuous functions
f−, f+ ∈ C

(
T1T2

)
with the properties that f− ≤ f ≤ f+ and∫

T1T2

(f+ − f−) d(x, v) ≤ ϵ

Since
∫
T1T2 f d(x, v) = 0 ∫

T1T2

f− d(x, v) ≤ 0 ≤
∫
T1T2

f+ d(x, v)

and ∫
T1T2

f+ d(x, v) ≤
∫
T1T2

f− d(x, v) + ϵ ≤ ϵ

and ∫
T1T2

f− d(x, v) ≥
∫
T1T2

f+ d(x, v)− ϵ ≥ −ϵ
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Figure 4: Discontinuities in {(x, v) | 0 ∈ L(x, v)}

Thus it holds

−ε ⩽
∫
T1T2

f−d(x, v) ⩽ 0 ⩽
∫
T1T2

f+d(x, v) ⩽ ε

We can apply Proposition 5.2 to f− and f+ so if R is big enough then

−2ε ⩽
∫
T1T2 f−d(x, v)− ε ⩽

∫ 1

0
f− (γR(t)) dt ⩽

∫ 1

0
f (γR(t)) dt

⩽
∫ 1

0
f+ (γR(t)) dt ⩽

∫
T1T2 f+d(x, v) + ε ⩽ 2ε,

Recall that γR(t) = (Re2πit, e2πit).
We define a new path γ̄R as the path that joins all points of γR(t) that intersect with the grid
with a line as we can see in Figure 4. γR(t) and γ̄R are uniformly O(R−1)-close as we can
deduce from Figure 5. Thus it for R large enough that
−3ε ⩽

∫ 1

0
f− (γ̄R(t)) dt ⩽

∫ 1

0
f (γ̄R(t)) dt ⩽

∫ 1

0
f+ (γ̄R(t)) dt ⩽ 3ε

This holds since
∫ 1

0
f+ (γ̄R(t)) dt =

∫ 1

0
(f+ (γR(t)) + (f+ (γ̄R(t)) − f+ (γR(t))))dt ≤ 2ϵ + ϵ = 3ϵ.

With the same argument we can justify that
∫ 1

0
f− (γ̄R(t)) dt ≥ −3ϵ It follows that∫ 1

0

f (γ̄R(t)) dt = o(1)

as R → ∞.
Let Pk be the polygon as in Figure 6 and let Ik be a subinterval of [0,1] such that γR(Ik) is
between two points of the grid. Then we can write∫

Ik

f (γ̄R(t)) dt = (area of Pk − ⊮Pk
(nk))

|Ik|
length of Lk
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Figure 5: γR(t) and γ̄R

Figure 6: Justification why γR(t) and γ̄R are uniformly O(R−1)-close

.
By construction, the length |Ik| of Ik is ϕk

2π
where ϕk is the angle of the arc on the circle of

radius R corresponding to Ik, so ϕk = O(R−1) because ϕk ·R = length of γR(Ik). On the other
hand,

length of Lk = 2R sin
ϕk

2
= 2R

(
ϕk

2
+ O

(
ϕ3
k

))
.
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Figure 7: The polygon Pk

Therefore ∫ 1

0

f (γ̄R(t)) dt =
K∑
k=1

( area of Pk − ⊮Pk
(nk))

|Ik|
length of Lk

=
1

2πR

(
K∑
k=1

( area of Pk − ⊮Pk
(nk))

ϕk

ϕk +O(ϕ3
k)

)

=
1

2πR

(
K∑
k=1

( area of Pk − ⊮Pk
(nk)) +

K∑
k=1

O
(
ϕ3
k

))
=

1

2πR
( area of polygon enclosed by γ̄R

-no. of lattice points inside ) + O
(
R−3

)
.

Let’s recall that
∫ 1

0
f (γ̄R(t)) dt = o(1). So multiplying by R in both sides we get

area of polygon enclosed by γ̄R - no. of lattice points inside γ̄R = o(R)

We have proven our theorem but for a polygon determined by γ̄R that approximates the circle of
radius R. To extrapolate this result to the circle we claim that the area of the polygon enclosed
by γ̄R differs from the area of the circle by O(1). We also claim that the number of points
inside the circle but outside the polygon is o(R). These claims prove the theorem for the circle
since

area of polygon enclosed by γR - no. of lattice points inside γR

= area of polygon enclosed by γ̄R +O(1) - no. of lattice points inside γ̄R + o(R)

= o(R)

From Figure 7 we can deduce why the first claim is true. In order to prove the second claim,
notice that any lattice point n inside the circle but outside the polygon satisfies

0 ⩽ R− ∥n∥ = O
(
R−1

)
.
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Figure 8: Justification of the first claim

This follows from Figure 5.
Fix δ > 0 and let g(x, v) = ⊮B2δ(0)(x) be the characteristic function of the 2δ-ball around the
identity 0 ∈ T2 (but considered as a function on T1T2 ). If now ∥n∥ lies in [R−δ, R], then there
is a corresponding subinterval of length ≫ δ

R
such that g (γR(t)) = 1 for all t in that interval.

Therefore

NR,δ =
∣∣{n ∈ Z2 | R− δ ⩽ ∥n∥ ⩽ R

}∣∣≪ R

δ

∫ 1

0

g (γR(t)) dt.

The inequality holds since
∫ 1

0
g (γR(t)) dt is one in an interval of length much bigger than δ

R
for

every element in NR,δ. Thus
∫ 1

0
g (γR(t)) dt ≫ δ

R
·NR,δ

By construction, g is Riemann integrable and so, for sufficiently large R,

NR,δ ≪
R

δ

∫
T1T2

g(x, v)d(x, v) ≪ R

δ
δ2 = Rδ.

This proves the claim, and hence the theorem.

Figure 9: Intuition interval

12


