
D-MATH Number Theory I HS 2023
Prof. Richard Pink

Solutions Additional Problems

1. Show that for any root of unity ζ ∈ C whose order is not a prime power, the
element 1− ζ is a unit in OQ(ζ).

Solution: By assumption the order n of ζ is divisible by distinct primes p1, p2.
Set K := Q(ζ), and for each i = 1, 2 set ζi := ζn/pi and Ki := Q(ζi). Then ζi is
a root of unity of order pi, and so pi ∈ (1 − ζi)OKi

by Theorem 3.6.7 (c). Since
1−ζi
1−ζ

=
∑n/pi−1

j=0 ζj ∈ OK , it follows that pi ∈ (1− ζ)OK . Since (p1, p2) = (1) in Z,
we deduce that 1 ∈ (1− ζ)OK and hence (1− ζ)OK = OK . Thus 1− ζ is a unit
in OK , as desired.

2. Let K be a number field and let S be a finite set of maximal ideals of OK . For any
p ∈ S and x ∈ K× let ordp(x) denote the exponent of p in the prime factorization
of the fractional ideal (x). We define the ring of S-integers in K to be

OK,S :=
⋂
p/∈S

OK,p =
{
x ∈ K

∣∣ ∀p /∈ S : ordp(x) ⩾ 0
}
.

The group O×
K,S is called the group of S-units in K.

(a) Show that the torsion subgroup of O×
K,S is µ(K).

(b) Let p1, . . . , pt be the distinct elements of S. Show that the homomorphism

φ : O×
K,S → Zt, x 7→ (ordpi(x))i

has kernel O×
K and that its image is a free abelian group of rank t.

(c) Deduce that O×
K,S

∼= µ(K)× Zr+s+|S|−1.

Solution:

(a) Since the torsion subgroup of K× is µ(K), the torsion subgroup of O×
K,S must

be a subgroup of µ(K). But µ(K) ⊆ O×
K ⊆ O×

K,S and the conclusion follows.

(b) Clearly O×
K ⊂ ker(φ). Conversely consider any x ∈ ker(φ). Then ordp(x) ⩾ 0

for all p ̸∈ S by the definition of OK,S and for all p ∈ S because φ(x) = 0.
Thus the prime factorization of (x) possesses only nonnegative exponents;
hence (x) ⊂ OK and so x ∈ OK . The same argument for x−1 in place of x
shows that x−1 ∈ OK as well. Together this shows that x ∈ O×

K , proving the
first assertion in (b).
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For the second let h be the class number of OK . Then for each i the ideal
phi is principal, say generated by xi. By construction we then have φ(xi) =
(0, . . . , 0, h, 0, . . . , 0) with entry h at i. Varying i this shows that hZt ⊂ im(φ).
Since im(φ) ⊂ Zt it follows that im(φ) is a free abelian group of rank t = |S|.

(c) By (b), we obtain a short exact sequence

1 → O×
K → O×

K,S → im(φ) ∼= Zt → 0.

Since im(φ) is free of rank t the sequence splits. With Dirichlet’s unit theorem
O×

K
∼= µ(K)× Zr+s−1 it follows that O×

K,S
∼= O×

K × Zt ∼= µ(K)× Zr+s+t−1.

3. Consider a Dedekind ring A with quotient field K, a finite Galois extension L/K,
and let B denote the integral closure of A in L. Consider a subextension K ′/K
which is also Galois and let A′ denote the integral closure of A in K ′. Consider
a prime p of A and a prime q ⊂ B above p, such that k(q)/k(p) is separable.
Determine the decomposition of p in A′ with its numerical invariants r, e, f and
its decomposition and inertia groups from the corresponding data in B.

Solution: Set Γ := Gal(L/K) and Γ′ := Gal(L/K ′) and Γ′′ := Gal(K ′/K) ∼=
Γ/G′. Let Iq ◁ Γq < Γ be the inertia group and the decomposition group for q/p.
We will show how these groups determine all the desired data.

Set p′ := q ∩ A′, which is a prime of A′ above p. Plugging in the definitions, we
see that the inertia and decomposition groups for q/p′ are I ′q := Γ′ ∩ Iq ◁ Γ′

q :=
Γ′ ∩ Γq < Γ′. Let I ′′p′ ◁ Γ

′′
p′ < Γ′′ denote the inertia and decomposition groups for

p′/p. Since k(q)/k(p′)/k(p) are separable field extensions, we have

e := eq/p = |Iq| f := fq/p = [Γq : Iq] r := rB/p = [Γ : Γq]

e′ := eq/p′ = |I ′q| f ′ := fq/p′ = [Γ′
q : I

′
q] r′ := rB/p′ = [Γ′ : Γ′

q]

e′′ := ep′/p = |I ′′p′ | f ′′ := fp′/p = [Γ′′
p′ : I

′′
p′ ] r′′ := rA′/p = [Γ′′ : Γ′′

p′ ]

where r../.. denotes the number of primes of .. above ... Since I ′q and Γ′
q are already

given by explicit formulas, a complete answer follows from the descriptions:

(a) Γ′′
p′ = ΓqΓ

′/Γ′ ∼= Γq/Γ
′
q.

(b) I ′′p′ = IqΓ
′/Γ′ ∼= Iq/I

′
q.

In both statements the last isomorphism results from the first isomorphism the-
orem. To prove (a) note that Γq stabilizes q and A′ and hence also p′ := q ∩ A′.
Thus its image ΓqΓ

′/Γ′ in Γ/Γ′ ∼= Gal(K ′/K) is contained in Γ′′
p′ . It follows that

e′′f ′′ = |Γ′′
p′| ⩾ |ΓqΓ

′/Γ′| = |Γq/Γ
′
q| =

|Γq|
|Γ′

q|
=

ef

e′f ′ .
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Since e = e′e′′ and f = f ′f ′′, this inequality must be an equality; hence so is the
inclusion ΓqΓ

′/Γ′ ⊂ Γ′′
p′ , proving (a).

Likewise, for (b) observe that Iq acts trivially on the residue field k(q) and hence
also on the subfield k(p′). Thus its image IqΓ

′/Γ′ in Γ/Γ′ ∼= Gal(K ′/K) is contained
in I ′′p′ . It follows that

e′′ = |I ′′p′ | ⩾ |IqΓ′/Γ′| = |Iq/I ′q| =
|Iq|
|I ′q|

=
e

e′
.

Since again e = e′e′′, the inclusion IqΓ
′/Γ′ ⊂ I ′′p′ must be an equality, proving (b).

4. Let L/K be a Galois extension of number fields with noncyclic Galois group.

(a) Show that any prime ideal of OK over which lies only one prime ideal of OL

is ramified in OL.

(b) Deduce that there are at most finitely many prime ideals with the property
in (a), and in particular no prime ideals of OK that are totally inert in OL.

Solution:

(a) Let p be a prime ideal of OK over which lies only one prime ideal q of OL.
Then the decomposition group at q is equal to Gal(L/K), so we have a short
exact sequence

1 → Iq → Gal(L/K) → Gal(k(q)/k(p)) → 1.

Since k(p) is a finite field, the group Gal(k(q)/k(p)) is cyclic; hence it is
not isomorphic to Gal(L/K). Thus the inertia group Iq is not trivial. By
Proposition 6.4.3, it follows that e = |Iq| > 1, as desired.

(b) By (a), every such prime is ramified. Hence, there are no totally inert primes.
Since, by Theorem 6.8.4, there are only finitely many ramified primes, there
are only finitely many primes with the property from (a).

5. Let K be a quadratic number field and γ the non-trivial Galois automorphism of
K/Q. Show that for every fractional ideal a of OK the ideal a · γ(a) is principal.
Hint: Prove this first in the case of prime ideals.

Solution: Let p be a maximal ideal of OK and p the rational prime under p.
Then pOK = p or p2 or pp′ for a prime ideal p′ ̸= p. Since γ(p) is also a prime
ideal over p, it is equal to p in the first two cases. In the first case we thus have
p · γ(p) = p2OK , and in the second case we have p · γ(p) = pOK . In the last case
the fact that the Galois group transitively permutes the primes over p implies that
γ(p) = p′. In that case we therefore have p · γ(p) = pOK . In all cases this shows
that p · γ(p) is a principal ideal. As any fractional ideal a of OK is a product of
powers of prime ideals, the desired result follows.
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6. Consider a prime p ≡ 3 mod (4). Show that K := Q(
√
−p) has odd class number.

Hint: Use Exercise 5 above and Exercise 5 of Sheet 9.

Solution: Here K is imaginary quadratic, so the non-trivial Galois automorphism
of K/Q is complex conjugation. Consider any ideal class [a] with [a]2 = 1. Then
a · ā−1 = a2 · (a · ā)−1, where a2 is principal by assumption and a · ā is principal by
Exercise 5 above. Thus a · ā−1 = (b) for some b ∈ K×. Then the computation

(b · b̄) = a · ā−1 · (a · ā−1) = a · ā−1 · ā · a−1 = (1)

shows that NmK/Q(b) = b · b̄ ∈ Z×. With b · b̄ ⩾ 0 this implies that NmK/Q(b) = 1.
By Exercise 5 on Sheet 9 there therefore exists c ∈ K× such that b = c̄/c. Thus
the fractional ideal b := ca satisfies [b] = [a] and b = b̄.

Now observe that −p ≡ 1 mod (4) implies that dK = −p. Thus p is the only
rational prime that is ramified in K, and (p) = p2 for the principal ideal p :=
(
√
−p) = p̄. Consider the prime decomposition b = pn · pn1

1 · · · pnr
r with pairwise

distinct primes p, p1, . . . , pr. Then each pi is unramified over Z, hence it is either
inert and pi = (pi) for some rational prime pi, or it is split and pip̄i = (pi) for some
rational prime pi. Now the equality b = b̄ = p̄n · p̄n1

1 · · · p̄nr
r and the uniqueness

of the prime decomposition implies that each split prime pi occurs with the same
exponent as its conjugate p̄i. Thus b is a product of principal ideals and therefore
itself principal.

This shows that the ideal class group of OK possesses no element of order 2 and
hence has odd order.
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