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Solutions 2

Noetherian rings, Dedekind rings, Linearly disjoint extensions,
Fractional ideals

1. Prove that the following conditions on a ring A are equivalent:

(a) Every ideal of A is finitely generated.

(b) Every ascending sequence of ideals of A becomes stationary.

(c) Every non-empty set of ideals of A possesses a maximal element.

(a1) Every submodule of a finitely generated A-module is finitely generated.

(b1) Every ascending sequence of submodules of a finitely generated A-module
becomes stationary.

(c1) Every non-empty set of submodules of a finitely generated A-module pos-
sesses a maximal element.

Solution: (a)ñ(b): Let panqně0 be an ascending sequence of ideals. Define a :“
Ť

ně0 an. Since each an contains 0, so does a. Next consider x, y P a and a P A. By
definition of a, there exist n1, n2 ě 0 such that x P an1 and y P an2 . As the sequence
panqně0 is ascending, we have x, y P amaxtn1,n2u. Moreover, since amaxtn1,n2u is an
ideal, we have

ax ` y P amaxtn1,n2u Ă a

and thus a is an ideal. By (a) the ideal a is finitely generated, i.e., there exist
x1, . . . , xm P A such that a “ px1, . . . , xmq. By the definition of a as the union of
the an, for each 1 ď i ď m there exists an ni ě 0 such that xi P ani

. Hence, for
n :“ maxtn1, . . . , nmu, we have

a “ px1, . . . , xmq Ă an.

Therefore an1 “ a for all n1 ě n, and so the ascending sequence of ideals becomes
stationary.

(b)ñ(c): If (c) is false, there exists a non-empty set of ideals S without a maximal
element. We can then recursively construct a non-terminating strictly ascending
sequence of ideals contained in S, which is a contradiction to (b).

(c)ñ(a): Let a be an ideal and let S be the set of ideals generated by finitely many
elements of a. Then S is non-empty and thus possesses a maximal element b “

px1, . . . xnq with x1, . . . , xn P a. If a ‰ px1, . . . xnq, there exists xn`1 P a∖ b. Then
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px1, . . . , xn`1q strictly contains b and is contained in S, violating the maximality
of b. Thus we have a “ b and in particular, the ideal a is finitely generated.

Using analogous arguments, one can show the equivalences (a1) ðñ (b1) ðñ (c1).

The implication (a1)ñ(a) directly follows from the fact that every ideal of A is a
submodule of the A-module A.

(a)ñ(a1): LetM be a finitely generated A-module and suppose that it is generated
by x1, . . . , xn. Let N be a submodule of M . We shall show that N is finitely
generated by induction on n. In the case n “ 0 we have N “ M “ 0, so the
assertion is obvious.

Now suppose that n ą 0. Consider the surjective A-linear map A ↠ Ax1 Ă M ,
a ÞÑ ax1. The preimage of N under this map is an ideal, which is finitely generated
by the assumption (a). Let z1, . . . , zk be the images of these generators, which
generate the submodule N X Ax1. Next the factor module M{Ax1 is generated
by n ´ 1 elements, so by the induction hypothesis the image N of N in M{Ax1 is
finitely generated. Choose elements y1, . . . , ym P N whose images generate N .

We claim that the elements y1, . . . , ym and z1, . . . , zk together generate N . To see
this, take any f P N and write its image in N as the image of a linear combination
a1y1`. . .`amym. Then by construction we have f´pa1y1`. . .`amymq P NXAx1,
which is therefore a linear combination of z1, . . . , zk. This shows that f is a linear
combination of y1, . . . , ym and z1, . . . , zk, as desired. Thus N is finitely generated.

2. Let A be a Noetherian ring. Then for every multiplicative subset S Ă A, the ring
S´1A is Noetherian.

Solution: Let a Ă ArS´1s be an ideal. Under the condition of a being prime,
we prove in exercise 5 of sheet 1 that a “ S´1pa X Aq. However, the argument
presented there works for any ideal. Using this, we see that a is generated by a
set of generators of aXA. As A is Noetherian, then aXA is finitely generated, so
a is too.

3. Prove that for any two finite field extensions L,L1{K within a common overfield
M the following conditions are equivalent:

(a) L and L1 are linearly disjoint over K, that is, the algebra L bK L1 is a field.

(b) rLL1{Ks “ rL{Ks ¨ rL1{Ks

(c) rLL1{Ls “ rL1{Ks

(d) rLL1{L1s “ rL{Ks

Moreover, these conditions imply:

(e) L X L1 “ K.
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Conversely, if at least one of L{K and L1{K is galois, then (e) implies the other
conditions.

Solution: First observe that since the extension L1{K is finite, it is finitely gener-
ated algebraic. Thus LL1{L is finitely generated algebraic and therefore finite. It
follows that LL1{K is finite. By the multiplicativity of the degrees we thus have

p˚q rLL1
{Ks “ rLL1

{Ls ¨ rL{Ks “ rLL1
{L1

s ¨ rL1
{Ks.

As every factor is a positive integer, it follows that (b), (c), (d) are all equivalent.

Next the map L ˆ L1 Ñ LL1, py, y1q ÞÑ yy1 is K-bilinear, so by the universal
property of the tensor product there is a unique K-linear map φ : L bK L1 Ñ LL1

satisfying y b y1 ÞÑ yy1. The image of this map is a subring which contains K and
generates LL1 as a field. As LL1{K is finite, this subring is already equal to LL1.
Therefore φ is surjective. If L bK L1 is a field, then φ is also injective and hence
an isomorphism. Otherwise it cannot be an isomorphism, because LL1 is a field.
Thus we always have dimKpLbK L1q ě rLL1{Ks with equality if and only LbK L1

is a field. Since

dimKpL bK L1
q “ dimKpLq ¨ dimKpL1

q “ rL{Ks ¨ rL1
{Ks,

this shows that (a) is equivalent to (b).

Next suppose that there exists ℓ P pLXL1q∖K. Then the element ℓb ℓ´1 P LbL1

satisfies φpℓbℓ´1q “ 1 “ φp1b1q. But since 1, ℓ P L and 1, ℓ´1 P L1 are K-linearly
independent, respectively, we have ℓ b ℓ´1 ‰ 1 b 1 in L bK L1. Thus φ is not an
isomorphism. This proves that (a) implies (e).

(Aliter: If L X L1 ‰ K compute rLL1{Ks using rL X L1{Ks ą 1.)

Finally, assume that one of L{K and L1{K is galois and that L X L1 “ K. After
exchanging L and L1 if necessary, we may assume that L{K is galois. By the
primitive element theorem there then exists d P L with L “ Kpdq. This implies
that LL1 “ L1pdq. Let f P KrXs be the minimal polynomial of d over K. Since
L{K is normal, this splits into linear factors over L. Now let g P L1rXs be the
minimal polynomial of d over L1. Since fpdq “ 0, we then have g|f in L1rXs.
It follows that all zeros of g lie in L; hence we have g P LrXs. Therefore g P

pL X L1qrXs “ KrXs. As f is already irreducible in KrXs, this shows that g “ f .
In particular we have

rLL1
{L1

s “ rL1
pdq{L1

s “ degpgq “ degpfq “ rL{Ks.

Therefore (e) implies (b) in this case, as desired.

3



4. Prove that any two finite field extensions L,L1{K with rL{Ks and rL1{Ks coprime
are linearly disjoint over K.

Solution: After embedding L and L1 into an algebraic closure ofK, we may assume
that they are contained in a common overfield M . Then the subfield LL1 Ă M
always satisfies rLL1{Ks ď rL{Ks ¨ rL1{Ks by the solution of Exercise 3. On the
other hand, by the multiplicativity of degrees p˚q above both rL{Ks and rL1{Ks

divide rLL1{Ks. As these numbers are coprime by assumption, it follows that
rL{Ks ¨ rL1{Ks divides rLL1{Ks. Thus we must have rL{Ks ¨ rL1{Ks “ rLL1{Ks.

5. Which of the following field extensions are linearly disjoint?

(a) Qp
5

?
2q{Q and Qp

6
?
2q{Q

(b) Qp
4
?
2q{Q and Qpi 4

?
2q{Q

(c) Qp
5
?
2qQ and Qpe2πi{5 5

?
2q{Q

Solution:

(a) As the degrees of the field extensions are 5 and 6 respectively, they are linearly
disjoint by Exercise 4.

(b) The element
?
2 is contained in Qp

4
?
2q X Qpi 4

?
2q, hence the field extensions

are not linearly disjoint over Q by condition (e) of Exercise 3.

(c) Both field extension have degree 5, but together they generate the field ex-
tension

Q
`

5
?
2, e2πi{5

5
?
2
˘

“ Q
`

5
?
2, e2πi{5

˘

with

“

Q
`

5
?
2, e2πi{5

˘

{Q
‰

“
“

Qp
5
?
2, e2πi{5q{Qpe2πi{5q

‰

¨
“

Qpe2πi{5q{Q
‰

ď 5 ¨ 4

By Exercise 3 the extensions are therefore not linearly disjoint.

6. (a) Consider the polynomial ring A “ krY, Zs over a field k together with the
ideal a “ pY, Zq. Determine the A-submodules

a´1 :“ tx P QuotpAq | x ¨ a Ă Au.

and aa´1 Ă A.

(b) Repeat this for A “ ZrY s and a “ p2, Y q.

Solutions :

(a) Since a Ă A is an ideal, we have A Ă a´1. Conversely consider any element
x P a´1. Since A is a unique factorization domain, we can write x “ b{c with
coprime b, c P A. Then x P a´1 implies that xY P A or again that bY P pcq.
Thus c divides bY within A. As b and c are coprime, this shows that c|Y .
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The same argument with Z in place of Y shows that c|Z. As Y and Z are
coprime, this implies c P Aˆ. Thus x “ b{c P A.

Together this shows that a´1 “ A and therefore aa´1 “ a.

(b) The same argument as in (a) shows that a´1 “ A and aa´1 “ a.

**7. Which of the properties of Dedekind rings hold for the ringOpCq of entire functions
C Ñ C?

5


