Solutions 2

Noetherian Rings, Dedekind Rings, Linearly disjoint extensions, Fractional ideals

1. Prove that the following conditions on a ring A are equivalent:

- (a) Every ideal of A is finitely generated.
- (b) Every ascending sequence of ideals of A becomes stationary.
- (c) Every non-empty set of ideals of A possesses a maximal element.
- (a') Every submodule of a finitely generated A-module is finitely generated.
- (b') Every ascending sequence of submodules of a finitely generated A-module becomes stationary.
- (c') Every non-empty set of submodules of a finitely generated A-module possesses a maximal element.

Solution: (a) \Rightarrow (b): Let $(\mathfrak{a}_n)_{n\geq 0}$ be an ascending sequence of ideals. Define $\mathfrak{a} := \bigcup_{n\geq 0} \mathfrak{a}_n$. Since each \mathfrak{a}_n contains 0, so does \mathfrak{a} . Next consider $x, y \in \mathfrak{a}$ and $a \in A$. By definition of \mathfrak{a} , there exist $n_1, n_2 \geq 0$ such that $x \in \mathfrak{a}_{n_1}$ and $y \in \mathfrak{a}_{n_2}$. As the sequence $(\mathfrak{a}_n)_{n\geq 0}$ is ascending, we have $x, y \in \mathfrak{a}_{\max\{n_1,n_2\}}$. Moreover, since $\mathfrak{a}_{\max\{n_1,n_2\}}$ is an ideal, we have

$$ax + y \in \mathfrak{a}_{\max\{n_1, n_2\}} \subset \mathfrak{a}$$

and thus \mathfrak{a} is an ideal. By (a) the ideal \mathfrak{a} is finitely generated, i.e., there exist $x_1, \ldots, x_m \in A$ such that $\mathfrak{a} = (x_1, \ldots, x_m)$. By the definition of \mathfrak{a} as the union of the \mathfrak{a}_n , for each $1 \leq i \leq m$ there exists an $n_i \geq 0$ such that $x_i \in \mathfrak{a}_{n_i}$. Hence, for $n := \max\{n_1, \ldots, n_m\}$, we have

$$\mathfrak{a} = (x_1, \ldots, x_m) \subset \mathfrak{a}_n.$$

Therefore $\mathfrak{a}_{n'} = \mathfrak{a}$ for all $n' \ge n$, and so the ascending sequence of ideals becomes stationary.

 $(b) \Rightarrow (c)$: If (c) is false, there exists a non-empty set of ideals S without a maximal element. We can then recursively construct a non-terminating strictly ascending sequence of ideals contained in S, which is a contradiction to (b).

(c) \Rightarrow (a): Let \mathfrak{a} be an ideal and let S be the set of ideals generated by finitely many elements of \mathfrak{a} . Then S is non-empty and thus possesses a maximal element $\mathfrak{b} = (x_1, \ldots, x_n)$ with $x_1, \ldots, x_n \in \mathfrak{a}$. If $\mathfrak{a} \neq (x_1, \ldots, x_n)$, there exists $x_{n+1} \in \mathfrak{a} \setminus \mathfrak{b}$. Then

 (x_1, \ldots, x_{n+1}) strictly contains \mathfrak{b} and is contained in S, violating the maximality of \mathfrak{b} . Thus we have $\mathfrak{a} = \mathfrak{b}$ and in particular, the ideal \mathfrak{a} is finitely generated.

Using analogous arguments, one can show the equivalences $(a') \iff (b') \iff (c')$.

The implication $(a') \Rightarrow (a)$ directly follows from the fact that every ideal of A is a submodule of the A-module A.

(a) \Rightarrow (a'): Let M be a finitely generated A-module and suppose that it is generated by x_1, \ldots, x_n . Let N be a submodule of M. We shall show that N is finitely generated by induction on n. In the case n = 0 we have N = M = 0, so the assertion is obvious.

Now suppose that n > 0. Consider the surjective A-linear map $A \to Ax_1 \subset M$, $a \mapsto ax_1$. The preimage of N under this map is an ideal, which is finitely generated by the assumption (a). Let z_1, \ldots, z_k be the images of these generators, which generate the submodule $N \cap Ax_1$. Next the factor module M/Ax_1 is generated by n-1 elements, so by the induction hypothesis the image \overline{N} of N in M/Ax_1 is finitely generated. Choose elements $y_1, \ldots, y_m \in N$ whose images generate \overline{N} .

We claim that the elements y_1, \ldots, y_m and z_1, \ldots, z_k together generate N. To see this, take any $f \in N$ and write its image in \overline{N} as the image of a linear combination $a_1y_1 + \ldots + a_my_m$. Then by construction we have $f - (a_1y_1 + \ldots + a_my_m) \in N \cap Ax_1$, which is therefore a linear combination of z_1, \ldots, z_k . This shows that f is a linear combination of y_1, \ldots, y_m and z_1, \ldots, z_k , as desired. Thus N is finitely generated.

2. Let A be a Noetherian ring. Then for every multiplicative subset $S \subset A$, the ring $S^{-1}A$ is Noetherian.

Solution: Let $\mathfrak{a} \subset A[S^{-1}]$ be an ideal. Under the condition of \mathfrak{a} being prime, we prove in exercise 5 of sheet 1 that $\mathfrak{a} = S^{-1}(\mathfrak{a} \cap A)$. However, the argument presented there works for any ideal. Using this, we see that \mathfrak{a} is generated by a set of generators of $\mathfrak{a} \cap A$. As A is Noetherian, then $\mathfrak{a} \cap A$ is finitely generated, so \mathfrak{a} is too.

- 3. Prove that for any two finite field extensions L, L'/K within a common overfield M the following conditions are equivalent:
 - (a) L and L' are linearly disjoint over K, that is, the algebra $L \otimes_K L'$ is a field.
 - (b) $[LL'/K] = [L/K] \cdot [L'/K]$
 - (c) [LL'/L] = [L'/K]
 - (d) [LL'/L'] = [L/K]

Moreover, these conditions imply:

(e) $L \cap L' = K$.

Conversely, if at least one of L/K and L'/K is galois, then (e) implies the other conditions.

Solution: First observe that since the extension L'/K is finite, it is finitely generated algebraic. Thus LL'/L is finitely generated algebraic and therefore finite. It follows that LL'/K is finite. By the multiplicativity of the degrees we thus have

(*)
$$[LL'/K] = [LL'/L] \cdot [L/K] = [LL'/L'] \cdot [L'/K].$$

As every factor is a positive integer, it follows that (b), (c), (d) are all equivalent.

Next the map $L \times L' \to LL'$, $(y, y') \mapsto yy'$ is K-bilinear, so by the universal property of the tensor product there is a unique K-linear map $\varphi \colon L \otimes_K L' \to LL'$ satisfying $y \otimes y' \mapsto yy'$. The image of this map is a subring which contains K and generates LL' as a field. As LL'/K is finite, this subring is already equal to LL'. Therefore φ is surjective. If $L \otimes_K L'$ is a field, then φ is also injective and hence an isomorphism. Otherwise it cannot be an isomorphism, because LL' is a field. Thus we always have $\dim_K(L \otimes_K L') \ge [LL'/K]$ with equality if and only $L \otimes_K L'$ is a field. Since

$$\dim_K(L \otimes_K L') = \dim_K(L) \cdot \dim_K(L') = [L/K] \cdot [L'/K],$$

this shows that (a) is equivalent to (b).

Next suppose that there exists $\ell \in (L \cap L') \setminus K$. Then the element $\ell \otimes \ell^{-1} \in L \otimes L'$ satisfies $\varphi(\ell \otimes \ell^{-1}) = 1 = \varphi(1 \otimes 1)$. But since $1, \ell \in L$ and $1, \ell^{-1} \in L'$ are K-linearly independent, respectively, we have $\ell \otimes \ell^{-1} \neq 1 \otimes 1$ in $L \otimes_K L'$. Thus φ is not an isomorphism. This proves that (a) implies (e).

(Aliter: If $L \cap L' \neq K$ compute [LL'/K] using $[L \cap L'/K] > 1$.)

Finally, assume that one of L/K and L'/K is galois and that $L \cap L' = K$. After exchanging L and L' if necessary, we may assume that L/K is galois. By the primitive element theorem there then exists $d \in L$ with L = K(d). This implies that LL' = L'(d). Let $f \in K[X]$ be the minimal polynomial of d over K. Since L/K is normal, this splits into linear factors over L. Now let $g \in L'[X]$ be the minimal polynomial of d over L'. Since f(d) = 0, we then have g|f in L'[X]. It follows that all zeros of g lie in L; hence we have $g \in L[X]$. Therefore $g \in$ $(L \cap L')[X] = K[X]$. As f is already irreducible in K[X], this shows that g = f. In particular we have

$$[LL'/L'] = [L'(d)/L'] = \deg(g) = \deg(f) = [L/K].$$

Therefore (e) implies (b) in this case, as desired.

4. Prove that any two finite field extensions L, L'/K with [L/K] and [L'/K] coprime are linearly disjoint over K.

Solution: After embedding L and L' into an algebraic closure of K, we may assume that they are contained in a common overfield M. Then the subfield $LL' \subset M$ always satisfies $[LL'/K] \leq [L/K] \cdot [L'/K]$ by the solution of Exercise 3. On the other hand, by the multiplicativity of degrees (*) above both [L/K] and [L'/K] divide [LL'/K]. As these numbers are coprime by assumption, it follows that $[L/K] \cdot [L'/K]$ divides [LL'/K]. Thus we must have $[L/K] \cdot [L'/K] = [LL'/K]$.

- 5. Which of the following field extensions are linearly disjoint?
 - (a) $\mathbb{Q}(\sqrt[5]{2})/\mathbb{Q}$ and $\mathbb{Q}(\sqrt[6]{2})/\mathbb{Q}$
 - (b) $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ and $\mathbb{Q}(i\sqrt[4]{2})/\mathbb{Q}$
 - (c) $\mathbb{Q}(\sqrt[5]{2})\mathbb{Q}$ and $\mathbb{Q}(e^{2\pi i/5}\sqrt[5]{2})/\mathbb{Q}$

Solution:

- (a) As the degrees of the field extensions are 5 and 6 respectively, they are linearly disjoint by Exercise 4.
- (b) The element $\sqrt{2}$ is contained in $\mathbb{Q}(\sqrt[4]{2}) \cap \mathbb{Q}(i\sqrt[4]{2})$, hence the field extensions are not linearly disjoint over \mathbb{Q} by condition (e) of Exercise 3.
- (c) Both field extension have degree 5, but together they generate the field extension

$$\mathbb{Q}(\sqrt[5]{2}, e^{2\pi i/5}\sqrt[5]{2}) = \mathbb{Q}(\sqrt[5]{2}, e^{2\pi i/5})$$

with

$$\left[\mathbb{Q}\left(\sqrt[5]{2}, e^{2\pi i/5}\right)/\mathbb{Q}\right] = \left[\mathbb{Q}\left(\sqrt[5]{2}, e^{2\pi i/5}\right)/\mathbb{Q}\left(e^{2\pi i/5}\right)\right] \cdot \left[\mathbb{Q}\left(e^{2\pi i/5}\right)/\mathbb{Q}\right] \leqslant 5 \cdot 4$$

By Exercise 3 the extensions are therefore not linearly disjoint.

6. (a) Consider the polynomial ring A = k[Y, Z] over a field k together with the ideal $\mathfrak{a} = (Y, Z)$. Determine the A-submodules

$$\mathfrak{a}^{-1} := \{ x \in \operatorname{Quot}(A) \mid x \cdot \mathfrak{a} \subset A \}.$$

and $\mathfrak{a}\mathfrak{a}^{-1} \subset A$.

(b) Repeat this for $A = \mathbb{Z}[Y]$ and $\mathfrak{a} = (2, Y)$.

Solutions:

(a) Since $\mathfrak{a} \subset A$ is an ideal, we have $A \subset \mathfrak{a}^{-1}$. Conversely consider any element $x \in \mathfrak{a}^{-1}$. Since A is a unique factorization domain, we can write x = b/c with coprime $b, c \in A$. Then $x \in \mathfrak{a}^{-1}$ implies that $xY \in A$ or again that $bY \in (c)$. Thus c divides bY within A. As b and c are coprime, this shows that c|Y.

The same argument with Z in place of Y shows that c|Z. As Y and Z are coprime, this implies $c \in A^{\times}$. Thus $x = b/c \in A$.

Together this shows that $\mathfrak{a}^{-1} = A$ and therefore $\mathfrak{a}\mathfrak{a}^{-1} = \mathfrak{a}$.

- (b) The same argument as in (a) shows that $\mathfrak{a}^{-1} = A$ and $\mathfrak{a}\mathfrak{a}^{-1} = \mathfrak{a}$.
- **7. Which of the properties of Dedekind rings hold for the ring $\mathcal{O}(\mathbb{C})$ of entire functions $\mathbb{C} \to \mathbb{C}$?