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NOETHERIAN RINGS, DEDEKIND RINGS, LINEARLY DISJOINT EXTENSIONS,
FRACTIONAL IDEALS

1. Prove that the following conditions on a ring A are equivalent:
(a
(b

) Every ideal of A is finitely generated.
)

¢) Every non-empty set of ideals of A possesses a maximal element.
)
)

Every ascending sequence of ideals of A becomes stationary.

(a/

(b

Every submodule of a finitely generated A-module is finitely generated.

Every ascending sequence of submodules of a finitely generated A-module
becomes stationary.

(/) Every non-empty set of submodules of a finitely generated A-module pos-
sesses a maximal element.

Solution: (a)=>(b): Let (a,)n,>0 be an ascending sequence of ideals. Define a :=
Uy=0 0n- Since each a,, contains 0, so does a. Next consider 2,y € a and a € A. By
definition of a, there exist ny,ny = 0 such that z € a,, and y € a,,. As the sequence
(an)n=0 is ascending, we have @,y € Gmaxfn; n,}. Moreover, since amax(n, .} is an
ideal, we have

axT + Y € Opax{ni,ny} © 4

and thus a is an ideal. By (a) the ideal a is finitely generated, i.e., there exist

T1,..., Ty, € A such that a = (xq,...,2,,). By the definition of a as the union of
the a,, for each 1 < i < m there exists an n; > 0 such that x; € a,,. Hence, for
n = max{ny,..., Ny}, we have

a=(z1,...,oy) C a,.

Therefore a,, = a for all n” > n, and so the ascending sequence of ideals becomes
stationary.

(b)=(c): If (c) is false, there exists a non-empty set of ideals .S without a maximal
element. We can then recursively construct a non-terminating strictly ascending
sequence of ideals contained in S, which is a contradiction to (b).

(c)=(a): Let a be an ideal and let S be the set of ideals generated by finitely many
elements of a. Then S is non-empty and thus possesses a maximal element b =
(x1,...x,) with z1,...,2, € a. If a # (x1,...2,), there exists x,41 € a . b. Then



(21, ...,Tpy1) strictly contains b and is contained in S, violating the maximality
of b. Thus we have a = b and in particular, the ideal a is finitely generated.

Using analogous arguments, one can show the equivalences (a') <= (b') < (¢/).

The implication (a’)=(a) directly follows from the fact that every ideal of A is a
submodule of the A-module A.

(a)=>(a/): Let M be a finitely generated A-module and suppose that it is generated
by x1,...,x,. Let N be a submodule of M. We shall show that N is finitely
generated by induction on n. In the case n = 0 we have N = M = 0, so the
assertion is obvious.

Now suppose that n > 0. Consider the surjective A-linear map A —» Ax; < M,
a — azy. The preimage of N under this map is an ideal, which is finitely generated
by the assumption (a). Let zi,...,z; be the images of these generators, which
generate the submodule N n Azy. Next the factor module M/Az; is generated
by n — 1 elements, so by the induction hypothesis the image N of N in M /Az; is
finitely generated. Choose elements 1, ..., ym € N whose images generate N.

We claim that the elements vy, ...,y and z1,..., 2, together generate N. To see
this, take any f € N and write its image in N as the image of a linear combination
a1y1 + - . .+ amYm. Then by construction we have f—(a1y1 +. ..+ anym) € N nAxy,
which is therefore a linear combination of 21, ..., z;. This shows that f is a linear
combination of yq,...,y,, and 21, ..., 2, as desired. Thus N is finitely generated.

. Let A be a Noetherian ring. Then for every multiplicative subset S c A, the ring
S~1A is Noetherian.

Solution: Let a = A[S™!'] be an ideal. Under the condition of a being prime,
we prove in exercise 5 of sheet 1 that a = S~'(a n A). However, the argument
presented there works for any ideal. Using this, we see that a is generated by a
set of generators of am A. As A is Noetherian, then a n A is finitely generated, so
a is too.

. Prove that for any two finite field extensions L, L//K within a common overfield
M the following conditions are equivalent:

L and L’ are linearly disjoint over K, that is, the algebra L ®x L’ is a field.
[LL'/K] = [L/K] - [L'/K]

[LL'/L] = [L'/K]

[LL'/L] = [L/K]

(a
(b
(c
(d

~— ~— o ~—

Moreover, these conditions imply:

() LAL =K.



Conversely, if at least one of L/K and L'/K is galois, then (e) implies the other
conditions.

Solution: First observe that since the extension L'//K is finite, it is finitely gener-
ated algebraic. Thus LL'/L is finitely generated algebraic and therefore finite. It
follows that LL'/K is finite. By the multiplicativity of the degrees we thus have

() [LL/K] = [LL/L]-[L/K] = [LLY/L']-[L'/K].

As every factor is a positive integer, it follows that (b), (c), (d) are all equivalent.

Next the map L x L' — LL', (y,y') — yy is K-bilinear, so by the universal
property of the tensor product there is a unique K-linear map ¢: L ®y L' — LL’
satisfying y ® ¢/ — y1’. The image of this map is a subring which contains K and
generates LL' as a field. As LL'/K is finite, this subring is already equal to LL'.
Therefore ¢ is surjective. If L ®x L’ is a field, then ¢ is also injective and hence
an isomorphism. Otherwise it cannot be an isomorphism, because LL’ is a field.
Thus we always have dimg (L ®y L) = [LL'/K] with equality if and only L ®y L'
is a field. Since

dimg (L ®x L') = dimg(L) - dimg(L) = [L/K]-[L'/K],

this shows that (a) is equivalent to (b).

Next suppose that there exists £ € (L~ L')~ K. Then the element /@ (' € LQ L'
satisfies p(/®(7') =1 = p(1®1). But since 1,/ € L and 1,/ € L/ are K-linearly
independent, respectively, we have /@ (7! # 1®1 in L ®x L'. Thus ¢ is not an
isomorphism. This proves that (a) implies (e).

(Aliter: If L n L' # K compute [LL'/K]| using [L n L'/K] > 1.)

Finally, assume that one of L/K and L'/K is galois and that L n L' = K. After
exchanging L and L’ if necessary, we may assume that L/K is galois. By the
primitive element theorem there then exists d € L with L = K(d). This implies
that LL" = L'(d). Let f € K[X] be the minimal polynomial of d over K. Since
L/K is normal, this splits into linear factors over L. Now let g € L'[X] be the
minimal polynomial of d over L. Since f(d) = 0, we then have g|f in L'[X].
It follows that all zeros of g lie in L; hence we have g € L[X]. Therefore g €
(Ln L')[X] = K[X]. As [ is already irreducible in K[X], this shows that g = f.
In particular we have

[LL'/L') = [L'(d)/L'] = deg(g) = deg(f) = [L/K].

Therefore (e) implies (b) in this case, as desired.



4. Prove that any two finite field extensions L, L'/K with [L/K] and [L'/K] coprime
are linearly disjoint over K.

Solution: After embedding L and L' into an algebraic closure of K, we may assume
that they are contained in a common overfield M. Then the subfield LL' < M
always satisfies [LL'/K]| < [L/K] - [L'/K] by the solution of Exercise 3. On the
other hand, by the multiplicativity of degrees (x) above both [L/K] and [L'/K]
divide [LL'/K]. As these numbers are coprime by assumption, it follows that
[L/K]-[L'/K] divides [LL'/K]. Thus we must have [L/K]-[L'/K| = [LL'/K].

5. Which of the following field extensions are linearly disjoint?
(a) Q(¥2)/Q and Q(V/2)/Q
(b) Q(v/2)/Q and Q(iv/2)/Q
(c) Q(¥2)Q and Q(e*™°4/2)/Q
Solution:

(a) As the degrees of the field extensions are 5 and 6 respectively, they are linearly
disjoint by Exercise 4.

(b) The element /2 is contained in Q(+/2) N Q(iv/2), hence the field extensions
are not linearly disjoint over Q by condition (e) of Exercise 3.

(c) Both field extension have degree 5, but together they generate the field ex-
tension ' '
Q(\E)/i, 6271’1/5\5/5) _ Q(%, 627”/5)
with
[Q(V2.¢*7)/Q] = [Q(V2,e*™)/Q(e*™)] - [Q(e*)/Q] < 5-4
By Exercise 3 the extensions are therefore not linearly disjoint.

6. (a) Consider the polynomial ring A = k[Y, Z] over a field k together with the
ideal a = (Y, Z). Determine the A-submodules

a! = {reQuot(A) |z -ac A}
and aa~! < A.

(b) Repeat this for A = Z[Y] and a = (2,Y).
Solutions:
(a) Since a = A is an ideal, we have A = a~!. Conversely consider any element
xr € a”!. Since A is a unique factorization domain, we can write r = b/c with

coprime b,c € A. Then x € a~! implies that Y € A or again that bY € (c).
Thus ¢ divides bY within A. As b and ¢ are coprime, this shows that c|Y.

4



The same argument with Z in place of Y shows that ¢|Z. As Y and Z are
coprime, this implies c € A*. Thus z = b/c € A.

Together this shows that a=! = A and therefore aa=! = a.

1 1

(b) The same argument as in (a) shows that a™' = A and aa™" = a.

47, Which of the properties of Dedekind rings hold for the ring O(C) of entire functions
C—-C?



