
D-MATH Number Theory I HS 2023
Prof. Richard Pink

Solutions 3
Dedekind rings, Fractional ideals, Lattices

1. Show that for all fractional ideals a of a Dedekind ring A we have a´1a “ p1q.

Solution: By the definition of a´1 we have a´1a Ă p1q. If this is a proper inclusion,
there exists a maximal ideal p with a´1a Ă p. Multiplying by p´1 we then deduce
that p´1a´1a Ă p´1p Ă p1q. By the definition of a´1 this means that p´1a´1 Ă a´1.
But this now contradicts Lemma 1.10.4 (b).

2. (a) Show that for all fractional ideals a, b, c of a Dedekind ring A we have
pa ` bqc “ ac ` bc and pa X bqc “ ac X bc.

(b) Do the same formulas hold for ideals of an arbitrary ring?

Solution: (a) By definition pa ` bqc is the fractional ideal that is generated by all
elements of the form pa ` bqc for all a P a and b P b and c P c. Taking b “ 0 this
includes all elements of the form ac, and taking a “ 0 it includes all elements of
the form bc. Thus pa ` bqc is also generated by all elements of the form ac ` bc1

with a P a and b P b and c, c1 P c. But these are just the generators of ac ` bc;
whence the first inequality.

Next aXb Ă a implies that paXbqc Ă ac, and aXb Ă b implies that paXbqc Ă bc.
Together this shows that paXbqc Ă acXbc. Applying this to the triple pac, bc, c´1q

in place of pa, b, cq we also obtain

ac X bc “ pac X bcqc´1c Ă pacc´1
X bcc´1

qc “ pa X bqc.

Together we thus deduce the second equality.

(b) The proof of the first formula in (a) works for ideals of an arbitrary ring, but
not the second. Indeed that formula is false in general. For instance consider the
polynomial ring R “ krX, Y s in two variables over a field k and take a :“ pXq and
b :“ pY q and c :“ pX, Y q. Then a X b “ pXY q and hence pa X bqc “ pX2Y,XY 2q,
whereas ac “ pX2, XY q and bc “ pXY, Y 2q and therefore ac X bc “ pXY q.

3. Consider non-zero ideals a, b of a Dedekind ring A with the prime factorizations
a “

śn
i“1 p

µi

i and b “
śn

i“1 p
νi
i for distinct maximal ideals pi and exponents

µi, νi ě 0.

(a) Prove that

a ` b “
śn

i“1 p
mintµi,νiu
i ,

a X b “
śn

i“1 p
maxtµi,νiu
i ,

a ¨ b “
śn

i“1 p
µi`νi
i .
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(b) Explain which of these operations can be viewed as the greatest common
divisor, respectively the least common multiple, of ideals.

(c) Deduce Proposition 1.11.5.

Solution:

(a) First, we show the following

Lemma: Consider non-zero ideals a, b Ă A with prime factorizations a “
śn

i“1 p
αi
i and b “

śn
i“1 p

βi

i for distinct p1, . . . , pn. Then we have a Ă b if and
only if αi ě βi for all i.

Proof. If αi ě βi for all i, then pαi
i Ă pβi

i for all i and hence a Ă b. Conversely
assume a Ă b and suppose that there exists 1 ď j ď n with αj ă βj. Then

multiplication by p
´αj

j yields

ź

i‰j

pαi
i “ p

´αj

j a Ă p
´αj

j b “ p
βj´αj

j

ź

i‰j

pβi

i Ă pj.

As pj is a prime ideal, it follows that some factor pi for i ‰ j is contained
in pj. Since pi and pj are maximal ideals, the inclusion pi Ă pj must then be
an equality, contradicting the assumption that p1, . . . , pn are distinct. Thus
all αj ě βj, as desired.

As a, b Ă a ` b, applying the Lemma twice yields a prime factorization
a`b “

śn
i“1 p

ξi
i with ξi ď mintµi, νiu for all i. Moreover, the ideals a and b are

trivially contained in
śn

i“1 p
mintµi,νiu
i , hence their sum is too. By the Lemma,

this yields ξi ě mintµi, νiu. Together, we get mintµi, νiu ě ξi ě mintµi, νiu
and thus equality.

Next
śn

i“1 p
maxtµi,νiu
i is trivially contained in a X b, so applying the Lemma

yields a prime factorization a X b “
śn

i“1 p
ηi
i with ηi ď maxtµi, νiu for all i.

Moreover, we have a X b Ă a, b, so applying the Lemma twice, we obtain
ηi ě νi, µi. Thus ηi “ maxtνi, µiu.

Finally, the formula for the product follows directly from the multiplication
rules of ideals.

Aliter: The formula for the product follows directly from the multiplication
rules of ideals. For the other two formulas set λi :“ mintµi, νiu, so that
µi “ λi ` µ1

i and νi “ λi ` ν 1
i with integers µ1

i, ν
1
i ě 0, and set c :“

śn
i“1 p

λi
i ,

so that a “ a1c with a1 :“
śn

i“1 p
µ1
i

i and b “ b1c with b1 :“
śn

i“1 p
ν1
i

i . Then by
the formulas in Exercise 2 it suffices to prove the two equalities for pa1, b1q in
place of pa, bq.

In that case we must prove that a1 ` b1 “ p1q. Suppose that this were not
the case. Then a1 ` b1 is contained in some maximal ideal p. But then a1 Ă p
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and Proposition 1.11.3 implies that a1 “ a2p for some ideal a2, and then the
prime factorization of a2 multiplied by p must be the prime factorization of a1.
Therefore p must appear in the prime factorization of a1. Thus for some i
we have p “ pi and µ1

i ą 0. But by the same argument with b1 in place
of a1 we deduce that ν 1

i ą 0. This contradicts the construction. Therefore
a1 ` b1 “ p1q, as desired.

Thus a1 and b1 are coprime. Observe that a1 X b1 is the kernel of the homo-
morphism A Ñ pA{a1q ˆ pA{b1q, x ÞÑ px ` a1, x ` b1q. But by the Chinese
Remainder Theorem this is also equal to a1b1. Thus a1 X b1 “ a1b1, which by

the formula for the product is
śn

i“1 p
µ1
i`ν1

i
i “

śn
i“1 p

maxtµ1
i,ν

1
iu

i , as desired.

(b) We say that an ideal b divides a if and only if a Ă b. Thus an ideal c is a
common divisor of a and b if and only if a Ă c and b Ă c, or equivalently
a ` b Ă c. Therefore we can view a ` b as the greatest common divisor of a
and b.

Similarly both a and b divide of c if and only if c Ă a and c Ă b, or equivalently
c Ă a X b. Therefore we can view a X b as the least common multiple of a
and b.

(c) By (a) we have a ` b “ p1q if and only if mintµi, νiu “ 0 for all i, which
means that their factorizations in maximal ideals do not have a common
factor. Moreover, we have a X b “ a ¨ b if and only if µi ` νi “ maxtµi, νiu.
As the µi and νi are non-negative integers, the second condition means that
for each i we have µi “ 0 or νi “ 0, which implies that a and b are coprime.

4. Prove that a Dedekind ring is factorial if and only if it is a principal ideal domain.

Solution: As principal ideal domains are factorial, it suffices to show the other
implication. Let A be a factorial Dedekind ring and consider a non-zero prime
ideal p. Let a be a non-zero element of p. Then by assumption we can write
a “ up1 ¨ ¨ ¨ pn with a unit u and prime elements pi. Since p is prime, it must
contain at least one factor of this product, and it cannot contain the unit u. Thus
some pi P p. Then ppiq Ă p is an inclusion of two non-zero prime ideals. As A has
Krull dimension 1, this must be an equality. All this shows that every non-zero
prime ideal of A is principal. As every non-zero ideal can be written as the product
of non-prime ideals, it is principal as well.

5. Consider the number field K :“ Qp
?

´5q and its ring of integers OK “ Zr
?

´5s.

(a) Show that p3q “ pp1 with prime ideals p :“ p3, 1`
?

´5q and p1 :“ p3, 1´
?

´5q.

(b) Determine the structure of the ring OK{p3q.

(c) Determine the inverse of p as a fractional ideal.

(d) Which powers of the ideal p are principal?

(e) Compute the factorization of p2q into prime ideals.
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(f) Compute the factorization of p5q into prime ideals.

(g) Compute the factorization of p11q into prime ideals.

Solution:

(a) By definition the ideal pp1 is generated by 3 ¨ 3 “ 9 and 3 ¨ p1 ˘
?

´5q and
p1 `

?
´5q ¨ p1 ´

?
´5q “ 6. Thus it contains 9´6 “ 3, which in turn divides

all other generators; hence pp1 “ p3q.

Since 1 ˘
?

´5 R p3q, both p and p1 properly contain p3q. Thus the formula
pp1 “ p3q also implies that both p and p1 are properly contained in OK .

Next observe that OK “ Z‘Z ¨
?

´5; hence p3q “ 3OK “ 3Z‘ 3Z ¨
?

´5 has
index 9 in OK . As the inclusions p3q Ă p Ă OK and p3q Ă p1 Ă OK are all
proper, it follows that p, p1 Ă OK have index 3. Thus the factor rings OK{p
and OK{p1 have order 3. But any ring of order 3 is isomorphic to F3 and
hence a field; which implies that p and p1 are prime ideals.

(b) Since 2 ¨ p1 `
?

´5q ` 2 ¨ p1 ´
?

´5q ´ 3 “ 1 lies in p ` p1, the ideals p and
p1 are coprime. By part (a) and the Chinese Remainder Theorem it follows
that OK{p3q – OK{p ˆ OK{p1 – F3 ˆ F3.

(c) The inverse fractional ideal of p3q is p1
3
q; hence (a) implies that p´1 “ p1

3
q¨p1 “

p1, 1´
?

´5
3

q.

(d) For any principal ideal a “ pa` b
?

´5q Ď OK we have rOK : as “ Normpaq “

|NormK{Qpa ` b
?

´5q| “ a2 ` 5b2. For all a, b P Z this number is ‰ 3. Since
rOK : ps “ 3, it follows that p is not principal.

Next, the ideal p2 is generated by the elements 3 ¨ 3 “ 9 and 3 ¨ p1 `
?

´5q

and p1 `
?

´5q2 “ ´4 ` 2
?

´5. Thus it also contains the smaller element

9 ´ 3 ¨ p1 `
?

´5q ` p´4 ` 2
?

´5q “ 2 ´
?

´5.

This obviously divides the third generator, and since NormK{Qp2 ´
?

´5q “

p2 ´
?

´5q ¨ p2 `
?

´5q “ 22 ` 5 “ 9, it also divides the first generator. Since
3¨p1`

?
´5q`3¨p2´

?
´5q “ 9, it therefore also divides the second generator;

hence p2 “ p2 ´
?

´5q is principal.

Together this shows that the ideal class of p in the class group ClpOKq has
order 2. Therefore pn is principal if and only if n is even.

(e) Since OK – ZrXs{pX2 ` 5q with
?

´5 corresponding to the residue class
of X, we have OK{p2q – F2rXs{pX2 ` 5q. Since X2 ` 5 “ p1`Xq2 in F2rXs,
it follows that OK{p2q – F2rXs{p1 ` Xq2. This ring has the unique maximal
ideal p1 ` Xq{p1 ` Xq2, and the factor ring is F2 – F2rXs{p1 ` Xq – OK{q
for q :“ p2, 1 `

?
´5q. Thus q is a prime ideal. The isomorphism OK{p2q –

F2rXs{p1 ` Xq2 also shows that q2 maps to zero in OK{p2q; hence q2 Ď p2q.
Since rOK : q2s “ rOK : qs2 “ 22 “ rOK : p2qs, it follows that q2 “ p2q.
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Note: In the same way as in (d) one can show that q is not a principal ideal.

Aliter (using divisibility only): Trial computation shows that p1 `
?

´5q2 “

2p2´
?

´5q is divisible by 2. Thus 1`
?

´5 must be divisible by some prime
ideal dividing p2q, i.e., containing 2, and so the ideal q :“ p2, 1 `

?
´5q is

also divisible by that prime ideal. On the other hand we have 1 `
?

´5 R

2Z ‘ 2Z
?

´5 “ p2q. Together this implies that p2q Ř q Ř OK . Since
rOK : p2qs “ 4, it follows that rOK : qs “ 2 and that q is a maximal ideal.
In particular q is a prime ideal. Finally, the ideal q2 is generated by the
elements 2 ¨ 2 “ 4 and 2 ¨ p1 `

?
´5q and p1 `

?
´5q2 “ ´4 ` 2

?
´5. Thus it

also contains the element ´4` 2 ¨ p1`
?

´5q ´ p´4` 2
?

´5q “ 2. Since that
in turn divides all other generators, it follows that q2 “ p2q.

(f) Since
?

´5
2

“ ´5, we have p
?

´5q “ Z
?

´5‘Z5 and so OK{p
?

´5q – F5. As
that is a field, the ideal p

?
´5q is a prime ideal. Moreover p

?
´5q2 “ p´5q “

p5q, and we are done.

(g) Since OK – ZrXs{pX2 ` 5q, we have OK{p11q – F11rXs{pX2 ` 5q. Since
the only squares in F11 are the residue classes 0, 1, 4, 9, 5, 3, the polynomial
X2 ` 5 “ X2 ´ 6 has no zero in F11 and is therefore irreducible. Thus the
factor ring OK{p11q is a finite field of order 112; hence p11q is already a prime
ideal.

6. Show that a subgroup Γ of a finite-dimensional R-vector space V is a complete
lattice if and only if Γ is discrete and V {Γ is compact.

Solution: Suppose that Γ is a complete lattice, i.e., that Γ “ Zv1 ‘ . . . ‘ Zvn for
an R-basis v1, . . . , vn of V . Then we can identify V with Rn such that Γ “ Zn.
Then Γ is discrete and we get homeomorphisms V {Γ – Rn{Zn – pR{Zqn – pS1qn,
which is compact (and Hausdorff).

Aliter: Then Γ is discrete by definition of the topology of V . Next we have
V “ Φ ` Γ for Φ :“ t

ř

xivi | @i : 0 ď xi ď 1u. Thus we obtain a continuous
surjective map Φ ↠ V {Γ. Since Φ is bounded and closed, it is compact; hence its
image V {Γ is compact, too.

Conversely, suppose that Γ is discrete and V {Γ is compact. By a proposition from
the lecture, the first condition implies that Γ “ Zv1 ‘ . . . ‘ Zvm for R-linearly
independent v1, . . . , vm P V . Let V1 :“ spanpv1, . . . , vmq and write V “ V1 ‘ V2 for
some subspace V2 Ď V . Then we obtain a homeomorphism V {Γ – V1{Γˆ V2, and
it follows that dimV2 “ 0, because V {Γ is compact. In conclusion, the lattice Γ is
complete.
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