D-MATH
Prof. Richard Pink

Solutions 4

Lattices, Minkowski Theory, Quadratic Extensions

1. (Minkowski's theorem on linear forms) Let

$$
L_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, n
$$

be real linear forms such that $\operatorname{det}\left(a_{i j}\right) \neq 0$, and let c_{1}, \ldots, c_{n} be positive real numbers such that $c_{1} \cdots c_{n}>\left|\operatorname{det}\left(a_{i j}\right)\right|$. Show that there exist integers $m_{1}, \ldots, m_{n} \in \mathbb{Z}$, not all zero, such that for all $i \in\{1, \ldots, n\}$

$$
\left|L_{i}\left(m_{1}, \ldots, m_{n}\right)\right|<c_{i} .
$$

Hint: Use Minkowski's lattice point theorem.
Solution: Let

$$
X:=\left\{\underline{x} \in \mathbb{R}^{n}\left|\forall i \in\{1, \ldots, n\}:\left|L_{i}(\underline{x})\right|<c_{i}\right\} .\right.
$$

Then X is convex and centrally symmetric, because the L_{i} are linear. We want to show that $\operatorname{vol}(X)>2^{n}$. Consider the matrix $A:=\left(a_{i j}\right)$. Then

$$
\begin{aligned}
A X & =\left\{\underline{x} \in \mathbb{R}^{n}\left|\forall i \in\{1, \ldots, n\}:\left|L_{i}\left(A^{-1} \underline{x}\right)\right|<c_{i}\right\}\right. \\
& =\left\{\underline{x} \in \mathbb{R}^{n}\left|\forall i \in\{1, \ldots, n\}:\left|x_{i}\right|<c_{i}\right\}\right.
\end{aligned}
$$

and thus $\operatorname{vol}(A X)=2^{n} c_{1} \cdots c_{n}$. Also $\operatorname{vol}(A X)=|\operatorname{det}(A)| \cdot \operatorname{vol}(X)$ and therefore

$$
\operatorname{vol}(X)=2^{n} c_{1} \cdots c_{n} \cdot|\operatorname{det}(A)|^{-1}
$$

which by assumption is $>2^{n}$, as desired. Since $2^{n}=2^{n} \operatorname{vol}\left(\mathbb{R}^{n} / \mathbb{Z}^{n}\right)$, the conclusion follows using Minkowski's lattice point theorem with the lattice \mathbb{Z}^{n}.
2. Consider a line $\ell:=\mathbb{R} \cdot(1, \alpha)$ in the plane \mathbb{R}^{2} with an irrational slope $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Show that for any $\varepsilon>0$, there are infinitely many lattice points $P \in \mathbb{Z}^{2}$ of distance $d(P, \ell)<\varepsilon$.
Solution: Consider the linear form $L_{1}\left(x_{1}, x_{2}\right):=\frac{1}{\sqrt{1+\alpha^{2}}} \cdot\left(x_{2}-\alpha x_{1}\right)$. Then for any point $P \in \mathbb{R}^{2}$ we have $\left|L_{1}(P)\right|=d(P, \ell)$. Consider the second linear form $L_{2}\left(x_{1}, x_{2}\right):=x_{2}$. Then L_{1} and L_{2} are linearly independent, so we can apply Minkowski's theorem on linear forms. For any $c_{1}>0$ choose $c_{2} \gg 0$ such that the inequality in Exercise 6 is satisfied. Thus there exists a lattice point $P=$
$\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ with $\left|L_{1}(P)\right|<c_{1}$. Since $\alpha \notin \mathbb{Q}$, we then have $x_{1}+\alpha x_{2} \neq 0$ and hence $L_{1}(P) \neq 0$. Therefore $0<d(P, \ell)<c_{1}$. Repeating the calculation with $d(P, \ell)$ in place of c_{1} yields a second lattice point $P^{\prime} \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ which satisfies $0<d\left(P^{\prime}, \ell\right)<d(P, \ell)$. Iterating this we can thus produce lattice points $P, P^{\prime}, P^{\prime \prime}, \ldots \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ with $c_{1}>d(P, \ell)>d\left(P^{\prime}, \ell\right)>d\left(P^{\prime \prime}, \ell\right)>\ldots>0$. The strict inequalities imply that these points are all distinct. Thus there exist infinitely many points $P \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ with $d(P, \ell)<c_{1}$.
3. (a) Show that the polynomial $f:=X^{3}+X+1$ is irreducible over \mathbb{Q}.

Consider the cubic number field $K:=\mathbb{Q}(\theta)$ with $f(\theta)=0$.
(b) Determine the ring of integers \mathcal{O}_{K} and its discriminant.
(c) Determine the number of real resp. non-real complex embeddings of K.

Solution:

(a) The polynomial is monic of degree 3, and its reduction modulo (2) has no zero in \mathbb{F}_{2} and is therefore irreducible. Thus f is irreducible over \mathbb{Z} and hence over \mathbb{Q}.
(b) The element θ has the minimal polynomial f over \mathbb{Q}; hence it is integral over \mathbb{Z}. Thus we have $\mathbb{Z}[\theta] \subset \mathcal{O}_{K}$. This ring has the basis $1, \theta, \theta^{2}$ over \mathbb{Z}, whose discriminant is the discriminant of f by Proposition 1.7.4. Direct computation shows that this discriminant is -31 . As this number is squarefree, by Corollary 3.2.3 it follows that that $\mathcal{O}_{K}=\mathbb{Z}[\theta]$ and $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-31$.
(c) As the polynomial f has odd degree, it has at least one real root. But its derivative $f^{\prime}=3 X^{2}+1$ is strictly positive on \mathbb{R}. Thus the graph of $f: \mathbb{R} \rightarrow \mathbb{R}$ is strictly monotone increasing, so the real root is unique and the other two complex roots of f are non-real. It follows that there exists precisely one embedding $K \hookrightarrow \mathbb{R}$ and two complex conjugate embeddings $K \hookrightarrow \mathbb{C}$ which do not land inside \mathbb{R}. In other words we have $r=s=1$.
4. Let \mathbb{F}_{q} be a finite field with q elements and assume that q is odd. Consider the polynomial ring $A:=\mathbb{F}_{q}[t]$ and its quotient field $K:=\mathbb{F}_{q}(t)$.
(a) Show that every quadratic extension of K has the form $L=K(\sqrt{f})$ for a squarefree polynomial $f \in A$.
(b) Determine the integral closure B of A in L.

Solution:

(a) Since $\operatorname{char}(K) \neq 2$, we have $L=K(\sqrt{f})$ for some element $f \in K^{\times}$. After multiplying by the square of its denominator we can assume that $f \in A \backslash\{0\}$. After dividing by any square factors we can then make f squarefree.
(b) The element $s:=\sqrt{f} \in L$ satisfies the monic equation $s^{2}=f$ with coefficients in A. Thus s lies in B. The subring $B^{\prime}:=A[s]$ then has the basis $1, s$ as an A-module. By Proposition 1.7.4 the discriminant of this basis is the discriminant of the polynomial $X^{2}-f$ and thus equal to $4 f$.
On the other hand B is a free A-module of rank 2 by Proposition 1.7.6. For any basis b, b^{\prime} we have $\binom{1}{s}=M \cdot\binom{b}{b^{\prime}}$ for a matrix $M \in \operatorname{Mat}_{2 \times 2}(A)$. From the definition of the discriminant it follows, as in the proof of Proposition 3.2.1 (b), that

$$
4 f=\operatorname{disc}(1, s)=\operatorname{det}(M)^{2} \cdot \operatorname{disc}\left(b, b^{\prime}\right)
$$

As $4 f$ is squarefree, this proves that $\operatorname{det}(M)$ is a non-zero constant in \mathbb{F}_{q}. Thus M is invertible over A and therefore $B=A[s]$.
*5. Show Minkowski's second theorem about successive minima: Let Γ be a complete lattice in a euclidean vector space $(V,\langle\rangle$,$) of finite dimension n$. The successive $\operatorname{minima} \lambda_{1}, \ldots, \lambda_{n}$ of Γ are defined iteratively by choosing for any $1 \leqslant i \leqslant n$ an element $\gamma_{i} \in \Gamma \backslash \bigoplus_{j=1}^{i-1} \mathbb{R} \gamma_{j}$ of minimal length $\lambda_{i}:=\|\gamma\|$. Then

$$
\frac{2^{n}}{n!} \operatorname{vol}(V / \Gamma) \leqslant \lambda_{1} \cdots \lambda_{n} \cdot \operatorname{vol}(B) \leqslant 2^{n} \operatorname{vol}(V / \Gamma)
$$

where B is the closed ball of radius 1 .
Solution: See Theorem 6.3.3 in
https://www.math.leidenuniv.nl/~evertse/Minkowski.pdf.
*6. Show Lagrange's four square theorem: Every nonnegative integer n can be written as the sum of four squares.
(a) Show that if m and n are sums of four squares, then so is $m n$.

Hint: Show that the reduced norm on the ring of quaternions $\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k$ that is given by $\|a+b i+c j+d k\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$ is multiplicative.
(b) Reduce the theorem to the case that n is a prime number p.
(c) Find integers α, β such that $\alpha^{2}+\beta^{2} \equiv-1 \bmod p$.

Hint: Consider the intersection of the sets

$$
S:=\left\{\alpha^{2} \bmod p \left\lvert\, 0 \leqslant \alpha<\frac{p}{2}\right.\right\} \quad \text { and } \quad S^{\prime}:=\left\{-1-\beta^{2} \bmod p \left\lvert\, 0 \leqslant \beta<\frac{p}{2}\right.\right\} .
$$

(d) For any such α, β show that
$\Gamma:=\left\{a=\left(a_{1}, \ldots, a_{4}\right) \in \mathbb{Z}^{4} \mid a_{1} \equiv \alpha a_{3}+\beta a_{4} \bmod (p), a_{2} \equiv \beta a_{3}-\alpha a_{4} \bmod (p)\right\}$ contains a nonzero point a in the open ball of radius $\sqrt{2 p}$ in \mathbb{R}^{4}.
(e) Show that $\|a\|^{2}=p$ and conclude.

Solution: See
https://concretenonsense.wordpress.com/2009/02/10/lagranges-four-square-theorem/.

