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Solutions 4

LATTICES, MINKOWSKI THEORY, QUADRATIC EXTENSIONS

1. (Minkowski’s theorem on linear forms) Let

n

L,-(a:l,...,xn)zz]aijxj, i1=1,...,n,

j=1
be real linear forms such that det(a;;) # 0, and let ¢4, ..., ¢, be positive real num-
bers such that ¢; - - - ¢, > | det(a;;)|. Show that there exist integers my, ..., m, € Z,
not all zero, such that for all i € {1,...,n}
’Li(mlv s 7mn)‘ < G

Hint: Use Minkowski’s lattice point theorem.

Solution: Let
X :={xzeR"|Vie{l,...,n}:|Li(z)| < ¢}

Then X is convex and centrally symmetric, because the L; are linear. We want to
show that vol(X) > 2". Consider the matrix A := (a;;). Then

AX ={zeR"|Vie{l,...,n}: |L{(A™'2)| < ¢}
={zeR"|Vie{l,....,n}: |z <}

and thus vol(AX) = 2"¢; - - - ¢,. Also vol(AX) = |det(A)] - vol(X) and therefore
vol(X) = 2%y -+ - ¢, - |det(A)] 7,

which by assumption is > 2", as desired. Since 2" = 2" vol(R"/Z"), the conclusion
follows using Minkowski’s lattice point theorem with the lattice Z".

2. Consider a line ¢ := R - (1, @) in the plane R? with an irrational slope o € R \. Q.
Show that for any ¢ > 0, there are infinitely many lattice points P € Z? of distance
d(P,{) <e.
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Solution: Consider the linear form Li(x,z5) = Wil (9 — awy). Then for

any point P € R? we have |L;(P)| = d(P,¢). Consider the second linear form
Lo(z1,29) := x9. Then Ly and Ly are linearly independent, so we can apply
Minkowski’s theorem on linear forms. For any ¢; > 0 choose ¢ » 0 such that
the inequality in Exercise 6 is satisfied. Thus there exists a lattice point P =
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(w1, 22) € Z* ~{(0,0)} with |L;(P)| < ¢;. Since a ¢ Q, we then have x1 + axy # 0
and hence L;(P) # 0. Therefore 0 < d(P,f) < ¢;. Repeating the calculation
with d(P,¢) in place of ¢; yields a second lattice point P’ € Z2 . {(0,0)} which
satisfies 0 < d(P’,0) < d(P,{). Iterating this we can thus produce lattice points
PP P ... eZ*~{0,0)} with ¢; > d(P,{) > d(P',¢) > d(P",{) > ... > 0.
The strict inequalities imply that these points are all distinct. Thus there exist
infinitely many points P € Z* \ {(0,0)} with d(P,{) < ¢;.

3. (a) Show that the polynomial f:= X3+ X + 1 is irreducible over Q.
Consider the cubic number field K := Q(6) with f(6) = 0.

(b) Determine the ring of integers Ok and its discriminant.

(c¢) Determine the number of real resp. non-real complex embeddings of K.
Solution:

(a) The polynomial is monic of degree 3, and its reduction modulo (2) has no
zero in Fy and is therefore irreducible. Thus f is irreducible over Z and hence
over Q.

(b) The element # has the minimal polynomial f over Q; hence it is integral
over Z. Thus we have Z[f] = Ok. This ring has the basis 1,6, 6? over Z,
whose discriminant is the discriminant of f by Proposition 1.7.4. Direct com-
putation shows that this discriminant is —31. As this number is squarefree,
by Corollary 3.2.3 it follows that that Ox = Z[f] and disc(Ok) = —31.

(c) As the polynomial f has odd degree, it has at least one real root. But its
derivative f’ = 3X?241 is strictly positive on R. Thus the graph of f: R — R
is strictly monotone increasing, so the real root is unique and the other two
complex roots of f are non-real. It follows that there exists precisely one
embedding K < R and two complex conjugate embeddings K < C which
do not land inside R. In other words we have r = s = 1.

4. Let F, be a finite field with ¢ elements and assume that ¢ is odd. Consider the
polynomial ring A := F [t] and its quotient field K :=F(¢).

(a) Show that every quadratic extension of K has the form L = K(/f) for a
squarefree polynomial f € A.

(b) Determine the integral closure B of A in L.
Solution:

(a) Since char(K) # 2, we have L = K(4/f) for some element f € K*. After
multiplying by the square of its denominator we can assume that f € A~ {0}.
After dividing by any square factors we can then make f squarefree.



(b) The element s := +/f € L satisfies the monic equation s* = f with coefficients
in A. Thus s lies in B. The subring B’ := A[s| then has the basis 1, s
as an A-module. By Proposition 1.7.4 the discriminant of this basis is the
discriminant of the polynomial X2 — f and thus equal to 4f.

On the other hand B is a free A-module of rank 2 by Proposition 1.7.6. For
any basis b, b’ we have (i) =M- (Z,) for a matrix M € Matoyxo(A). From the
definition of the discriminant it follows, as in the proof of Proposition 3.2.1
(b), that

4f = disc(1,s) = det(M)? - disc(b, b').
As 4f is squarefree, this proves that det()) is a non-zero constant in F,.
Thus M is invertible over A and therefore B = A[s].

*5. Show Minkowski’s second theorem about successive minima: Let T' be a complete
lattice in a euclidean vector space (V,{, )) of finite dimension n. The successive
minima Ay, ..., A, of I' are defined iteratively by choosing for any 1 < ¢ < n an
element v; € T’ \ @;—:11 R~; of minimal length A; := |v||. Then

n

2
—‘VOI(V/F) < Ao A, vol(B) < 2" vol(V)T),
n!

where B is the closed ball of radius 1.

Solution: See Theorem 6.3.3 in
https://www.math.leidenuniv.nl/~evertse/Minkowski.pdf.

*6. Show Lagrange’s four square theorem: Every nonnegative integer n can be written
as the sum of four squares.

(a) Show that if m and n are sums of four squares, then so is mn.

Hint: Show that the reduced norm on the ring of quaternions Z@®ZiP®7ZjDZk
that is given by |a + bi + ¢j + dk|| = v/a® + b2 + ¢ + d? is multiplicative.

(b) Reduce the theorem to the case that n is a prime number p.
(c) Find integers a, 3 such that a® + ? = —1 mod p.

Hint: Consider the intersection of the sets

S:={a2m0dp‘0<a<g} and S’:={—1—62modp‘0<6<
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I':={a=(a,...,a1) € Z* | ay = aaz+Bay mod (p), ar = Baz—aas mod (p)}

(d) For any such «, 8 show that

contains a nonzero point a in the open ball of radius 1/2p in R*.

(e) Show that [la|* = p and conclude.

Solution: See
https://concretenonsense.wordpress.com/2009/02/10/1lagranges-four-square-theorem/.



