Number Theory I

Solutions 4

LATTICES, MINKOWSKI THEORY, QUADRATIC EXTENSIONS

1. (Minkowski's theorem on linear forms) Let

$$L_i(x_1,...,x_n) = \sum_{j=1}^n a_{ij}x_j, \qquad i = 1,...,n,$$

be real linear forms such that $\det(a_{ij}) \neq 0$, and let c_1, \ldots, c_n be positive real numbers such that $c_1 \cdots c_n > |\det(a_{ij})|$. Show that there exist integers $m_1, \ldots, m_n \in \mathbb{Z}$, not all zero, such that for all $i \in \{1, \ldots, n\}$

$$|L_i(m_1,\ldots,m_n)| < c_i.$$

Hint: Use Minkowski's lattice point theorem.

Solution: Let

$$X := \{ \underline{x} \in \mathbb{R}^n \mid \forall i \in \{1, \dots, n\} : |L_i(\underline{x})| < c_i \}$$

Then X is convex and centrally symmetric, because the L_i are linear. We want to show that $vol(X) > 2^n$. Consider the matrix $A := (a_{ij})$. Then

$$AX = \{ \underline{x} \in \mathbb{R}^n \mid \forall i \in \{1, \dots, n\} : |L_i(A^{-1}\underline{x})| < c_i \}$$
$$= \{ \underline{x} \in \mathbb{R}^n \mid \forall i \in \{1, \dots, n\} : |x_i| < c_i \}$$

and thus $\operatorname{vol}(AX) = 2^n c_1 \cdots c_n$. Also $\operatorname{vol}(AX) = |\det(A)| \cdot \operatorname{vol}(X)$ and therefore

 $\operatorname{vol}(X) = 2^n c_1 \cdots c_n \cdot |\det(A)|^{-1},$

which by assumption is $> 2^n$, as desired. Since $2^n = 2^n \operatorname{vol}(\mathbb{R}^n/\mathbb{Z}^n)$, the conclusion follows using Minkowski's lattice point theorem with the lattice \mathbb{Z}^n .

2. Consider a line $\ell := \mathbb{R} \cdot (1, \alpha)$ in the plane \mathbb{R}^2 with an irrational slope $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Show that for any $\varepsilon > 0$, there are infinitely many lattice points $P \in \mathbb{Z}^2$ of distance $d(P, \ell) < \varepsilon$.

Solution: Consider the linear form $L_1(x_1, x_2) := \frac{1}{\sqrt{1+\alpha^2}} \cdot (x_2 - \alpha x_1)$. Then for any point $P \in \mathbb{R}^2$ we have $|L_1(P)| = d(P, \ell)$. Consider the second linear form $L_2(x_1, x_2) := x_2$. Then L_1 and L_2 are linearly independent, so we can apply Minkowski's theorem on linear forms. For any $c_1 > 0$ choose $c_2 \gg 0$ such that the inequality in Exercise 6 is satisfied. Thus there exists a lattice point P = $(x_1, x_2) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ with $|L_1(P)| < c_1$. Since $\alpha \notin \mathbb{Q}$, we then have $x_1 + \alpha x_2 \neq 0$ and hence $L_1(P) \neq 0$. Therefore $0 < d(P, \ell) < c_1$. Repeating the calculation with $d(P, \ell)$ in place of c_1 yields a second lattice point $P' \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ which satisfies $0 < d(P', \ell) < d(P, \ell)$. Iterating this we can thus produce lattice points $P, P', P'', \ldots \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ with $c_1 > d(P, \ell) > d(P', \ell) > d(P'', \ell) > \ldots > 0$. The strict inequalities imply that these points are all distinct. Thus there exist infinitely many points $P \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ with $d(P, \ell) < c_1$.

3. (a) Show that the polynomial $f := X^3 + X + 1$ is irreducible over \mathbb{Q} .

Consider the cubic number field $K := \mathbb{Q}(\theta)$ with $f(\theta) = 0$.

- (b) Determine the ring of integers \mathcal{O}_K and its discriminant.
- (c) Determine the number of real resp. non-real complex embeddings of K.

Solution:

- (a) The polynomial is monic of degree 3, and its reduction modulo (2) has no zero in \mathbb{F}_2 and is therefore irreducible. Thus f is irreducible over \mathbb{Z} and hence over \mathbb{Q} .
- (b) The element θ has the minimal polynomial f over \mathbb{Q} ; hence it is integral over \mathbb{Z} . Thus we have $\mathbb{Z}[\theta] \subset \mathcal{O}_K$. This ring has the basis $1, \theta, \theta^2$ over \mathbb{Z} , whose discriminant is the discriminant of f by Proposition 1.7.4. Direct computation shows that this discriminant is -31. As this number is squarefree, by Corollary 3.2.3 it follows that that $\mathcal{O}_K = \mathbb{Z}[\theta]$ and disc $(\mathcal{O}_K) = -31$.
- (c) As the polynomial f has odd degree, it has at least one real root. But its derivative $f' = 3X^2 + 1$ is strictly positive on \mathbb{R} . Thus the graph of $f : \mathbb{R} \to \mathbb{R}$ is strictly monotone increasing, so the real root is unique and the other two complex roots of f are non-real. It follows that there exists precisely one embedding $K \to \mathbb{R}$ and two complex conjugate embeddings $K \to \mathbb{C}$ which do not land inside \mathbb{R} . In other words we have r = s = 1.
- 4. Let \mathbb{F}_q be a finite field with q elements and assume that q is odd. Consider the polynomial ring $A := \mathbb{F}_q[t]$ and its quotient field $K := \mathbb{F}_q(t)$.
 - (a) Show that every quadratic extension of K has the form $L = K(\sqrt{f})$ for a squarefree polynomial $f \in A$.
 - (b) Determine the integral closure B of A in L.

Solution:

(a) Since $\operatorname{char}(K) \neq 2$, we have $L = K(\sqrt{f})$ for some element $f \in K^{\times}$. After multiplying by the square of its denominator we can assume that $f \in A \setminus \{0\}$. After dividing by any square factors we can then make f squarefree.

(b) The element $s := \sqrt{f} \in L$ satisfies the monic equation $s^2 = f$ with coefficients in A. Thus s lies in B. The subring B' := A[s] then has the basis 1, sas an A-module. By Proposition 1.7.4 the discriminant of this basis is the discriminant of the polynomial $X^2 - f$ and thus equal to 4f.

On the other hand B is a free A-module of rank 2 by Proposition 1.7.6. For any basis b, b' we have $\binom{1}{s} = M \cdot \binom{b}{b'}$ for a matrix $M \in \operatorname{Mat}_{2 \times 2}(A)$. From the definition of the discriminant it follows, as in the proof of Proposition 3.2.1 (b), that

$$4f = \operatorname{disc}(1, s) = \operatorname{det}(M)^2 \cdot \operatorname{disc}(b, b').$$

As 4f is squarefree, this proves that det(M) is a non-zero constant in \mathbb{F}_q . Thus M is invertible over A and therefore B = A[s].

*5. Show Minkowski's second theorem about successive minima: Let Γ be a complete lattice in a euclidean vector space (V, \langle , \rangle) of finite dimension n. The successive minima $\lambda_1, \ldots, \lambda_n$ of Γ are defined iteratively by choosing for any $1 \leq i \leq n$ an element $\gamma_i \in \Gamma \smallsetminus \bigoplus_{j=1}^{i-1} \mathbb{R}\gamma_j$ of minimal length $\lambda_i := \|\gamma\|$. Then

$$\frac{2^n}{n!}\operatorname{vol}(V/\Gamma) \leqslant \lambda_1 \cdots \lambda_n \cdot \operatorname{vol}(B) \leqslant 2^n \operatorname{vol}(V/\Gamma),$$

where B is the closed ball of radius 1.

Solution: See Theorem 6.3.3 in

https://www.math.leidenuniv.nl/~evertse/Minkowski.pdf.

- *6. Show Lagrange's four square theorem: Every nonnegative integer n can be written as the sum of four squares.
 - (a) Show that if *m* and *n* are sums of four squares, then so is *mn*. *Hint:* Show that the reduced norm on the ring of quaternions $\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k$ that is given by $||a + bi + cj + dk|| = \sqrt{a^2 + b^2 + c^2 + d^2}$ is multiplicative.
 - (b) Reduce the theorem to the case that n is a prime number p.
 - (c) Find integers α , β such that $\alpha^2 + \beta^2 \equiv -1 \mod p$. *Hint:* Consider the intersection of the sets

$$S := \left\{ \alpha^2 \mod p \mid 0 \le \alpha < \frac{p}{2} \right\} \quad \text{and} \quad S' := \left\{ -1 - \beta^2 \mod p \mid 0 \le \beta < \frac{p}{2} \right\}.$$

(d) For any such α , β show that

$$\Gamma := \left\{ a = (a_1, \dots, a_4) \in \mathbb{Z}^4 \mid a_1 \equiv \alpha a_3 + \beta a_4 \mod (p), \ a_2 \equiv \beta a_3 - \alpha a_4 \mod (p) \right\}$$

contains a nonzero point a in the open ball of radius $\sqrt{2p}$ in \mathbb{R}^4 .

(e) Show that $||a||^2 = p$ and conclude.

Solution: See

https://concretenonsense.wordpress.com/2009/02/10/lagranges-four-square-theorem/.