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Solutions 4

Lattices, Minkowski Theory, Quadratic Extensions

1. (Minkowski’s theorem on linear forms) Let

Lipx1, . . . , xnq “

n
ÿ

j“1

aijxj, i “ 1, . . . , n,

be real linear forms such that detpaijq ‰ 0, and let c1, . . . , cn be positive real num-
bers such that c1 ¨ ¨ ¨ cn ą | detpaijq|. Show that there exist integersm1, . . . ,mn P Z,
not all zero, such that for all i P t1, . . . , nu

|Lipm1, . . . ,mnq| ă ci.

Hint: Use Minkowski’s lattice point theorem.

Solution: Let

X :“ tx P Rn
| @i P t1, . . . , nu : |Lipxq| ă ciu.

Then X is convex and centrally symmetric, because the Li are linear. We want to
show that volpXq ą 2n. Consider the matrix A :“ paijq. Then

AX “ tx P Rn
| @i P t1, . . . , nu : |LipA

´1xq| ă ciu

“ tx P Rn
| @i P t1, . . . , nu : |xi| ă ciu

and thus volpAXq “ 2nc1 ¨ ¨ ¨ cn. Also volpAXq “ | detpAq| ¨ volpXq and therefore

volpXq “ 2nc1 ¨ ¨ ¨ cn ¨ | detpAq|
´1,

which by assumption is ą 2n, as desired. Since 2n “ 2n volpRn{Znq, the conclusion
follows using Minkowski’s lattice point theorem with the lattice Zn.

2. Consider a line ℓ :“ R ¨ p1, αq in the plane R2 with an irrational slope α P R∖Q.
Show that for any ε ą 0, there are infinitely many lattice points P P Z2 of distance
dpP, ℓq ă ε.

Solution: Consider the linear form L1px1, x2q :“ 1?
1`α2 ¨ px2 ´ αx1q. Then for

any point P P R2 we have |L1pP q| “ dpP, ℓq. Consider the second linear form
L2px1, x2q :“ x2. Then L1 and L2 are linearly independent, so we can apply
Minkowski’s theorem on linear forms. For any c1 ą 0 choose c2 " 0 such that
the inequality in Exercise 6 is satisfied. Thus there exists a lattice point P “
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px1, x2q P Z2 ∖ tp0, 0qu with |L1pP q| ă c1. Since α R Q, we then have x1 `αx2 ‰ 0
and hence L1pP q ‰ 0. Therefore 0 ă dpP, ℓq ă c1. Repeating the calculation
with dpP, ℓq in place of c1 yields a second lattice point P 1 P Z2 ∖ tp0, 0qu which
satisfies 0 ă dpP 1, ℓq ă dpP, ℓq. Iterating this we can thus produce lattice points
P, P 1, P 2, . . . P Z2 ∖ tp0, 0qu with c1 ą dpP, ℓq ą dpP 1, ℓq ą dpP 2, ℓq ą . . . ą 0.
The strict inequalities imply that these points are all distinct. Thus there exist
infinitely many points P P Z2 ∖ tp0, 0qu with dpP, ℓq ă c1.

3. (a) Show that the polynomial f :“ X3 ` X ` 1 is irreducible over Q.

Consider the cubic number field K :“ Qpθq with fpθq “ 0.

(b) Determine the ring of integers OK and its discriminant.

(c) Determine the number of real resp. non-real complex embeddings of K.

Solution:

(a) The polynomial is monic of degree 3, and its reduction modulo p2q has no
zero in F2 and is therefore irreducible. Thus f is irreducible over Z and hence
over Q.

(b) The element θ has the minimal polynomial f over Q; hence it is integral
over Z. Thus we have Zrθs Ă OK . This ring has the basis 1, θ, θ2 over Z,
whose discriminant is the discriminant of f by Proposition 1.7.4. Direct com-
putation shows that this discriminant is ´31. As this number is squarefree,
by Corollary 3.2.3 it follows that that OK “ Zrθs and discpOKq “ ´31.

(c) As the polynomial f has odd degree, it has at least one real root. But its
derivative f 1 “ 3X2`1 is strictly positive on R. Thus the graph of f : R Ñ R
is strictly monotone increasing, so the real root is unique and the other two
complex roots of f are non-real. It follows that there exists precisely one
embedding K ãÑ R and two complex conjugate embeddings K ãÑ C which
do not land inside R. In other words we have r “ s “ 1.

4. Let Fq be a finite field with q elements and assume that q is odd. Consider the
polynomial ring A :“ Fqrts and its quotient field K :“ Fqptq.

(a) Show that every quadratic extension of K has the form L “ Kp
?
f q for a

squarefree polynomial f P A.

(b) Determine the integral closure B of A in L.

Solution:

(a) Since charpKq ‰ 2, we have L “ Kp
?
f q for some element f P Kˆ. After

multiplying by the square of its denominator we can assume that f P A∖t0u.
After dividing by any square factors we can then make f squarefree.
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(b) The element s :“
?
f P L satisfies the monic equation s2 “ f with coefficients

in A. Thus s lies in B. The subring B1 :“ Arss then has the basis 1, s
as an A-module. By Proposition 1.7.4 the discriminant of this basis is the
discriminant of the polynomial X2 ´ f and thus equal to 4f .

On the other hand B is a free A-module of rank 2 by Proposition 1.7.6. For
any basis b, b1 we have

`

1
s

˘

“ M ¨
`

b
b1

˘

for a matrix M P Mat2ˆ2pAq. From the
definition of the discriminant it follows, as in the proof of Proposition 3.2.1
(b), that

4f “ discp1, sq “ detpMq
2

¨ discpb, b1
q.

As 4f is squarefree, this proves that detpMq is a non-zero constant in Fq.
Thus M is invertible over A and therefore B “ Arss.

*5. Show Minkowski’s second theorem about successive minima: Let Γ be a complete
lattice in a euclidean vector space pV, x , yq of finite dimension n. The successive
minima λ1, . . . , λn of Γ are defined iteratively by choosing for any 1 ď i ď n an
element γi P Γ∖

Ài´1
j“1Rγj of minimal length λi :“ }γ}. Then

2n

n!
volpV {Γq ď λ1 ¨ ¨ ¨λn ¨ volpBq ď 2n volpV {Γq,

where B is the closed ball of radius 1.

Solution: See Theorem 6.3.3 in
https://www.math.leidenuniv.nl/~evertse/Minkowski.pdf.

*6. Show Lagrange’s four square theorem: Every nonnegative integer n can be written
as the sum of four squares.

(a) Show that if m and n are sums of four squares, then so is mn.

Hint: Show that the reduced norm on the ring of quaternions Z‘Zi‘Zj‘Zk
that is given by }a ` bi ` cj ` dk} “

?
a2 ` b2 ` c2 ` d2 is multiplicative.

(b) Reduce the theorem to the case that n is a prime number p.

(c) Find integers α, β such that α2 ` β2 ” ´1 mod p.

Hint: Consider the intersection of the sets

S :“
!

α2 mod p
ˇ

ˇ

ˇ
0 ď α ă

p

2

)

and S 1 :“
!

´1 ´ β2 mod p
ˇ

ˇ

ˇ
0 ď β ă

p

2

)

.

(d) For any such α, β show that

Γ :“
␣

a “ pa1, . . . , a4q P Z4
ˇ

ˇ a1 ” αa3`βa4 mod ppq, a2 ” βa3´αa4 mod ppq
(

contains a nonzero point a in the open ball of radius
?
2p in R4.

(e) Show that }a}2 “ p and conclude.

Solution: See
https://concretenonsense.wordpress.com/2009/02/10/lagranges-four-square-theorem/.
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