Number Theory I

Exercise sheet 1

PRIME IDEALS, INTEGRAL EXTENSIONS, LOCALIZATION, NORMALIZATION

- 1. Let A be a ring. Prove that a proper ideal $\mathfrak{p} \subsetneq A$ is a prime ideal if and only if for any ideals $\mathfrak{a}, \mathfrak{b} \subset A$ with $\mathfrak{ab} \subset \mathfrak{p}$ we have $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.
- 2. Give an example of a ring extension $A \subset B$ and
 - (a) prime ideals $\mathbf{q} \subsetneq \mathbf{q}' \subset B$ with $\mathbf{q} \cap A = \mathbf{q}' \cap A$.
 - (b) a prime ideal $\mathfrak{p} \subset A$ for which there exists no prime ideal $\mathfrak{q} \subset B$ with $\mathfrak{q} \cap A = \mathfrak{p}$.
- 3. Let $A \subset B$ be an integral ring extension. Show that $a \in A$ is a unit in B if and only if it is a unit in A.
- 4. Let A be an integral domain and let $S \subset A \setminus \{0\}$ be a multiplicative subset. Prove that the ring extension $A \subset S^{-1}A$ is integral if and only if $S \subset A^{\times}$.
- *5. Let A be an integral domain and let $S \subset A \setminus \{0\}$ be a multiplicative subset. Show that $\mathbf{q} \mapsto \mathbf{q} \cap A$ induces a bijection from the set of prime ideals $\mathbf{q} \subset S^{-1}A$ to the set of prime ideals $\mathbf{p} \subset A$ satisfying $S \cap \mathbf{p} = \emptyset$.

(*Hint:* Show that the inverse map is given by $\mathfrak{p} \mapsto S^{-1}\mathfrak{p} := \left\{ \frac{a}{s} \mid a \in \mathfrak{p}, \ s \in S \right\}$.)

*6. Consider an integral domain A and an element $s \in A \setminus \{0\}$. Show that for the multiplicative subset $S := \{s^n \mid n \ge 0\}$ we have

$$S^{-1}A \cong A[X]/(sX-1).$$

7. Let L := k(t) be the field of rational functions in one variable over a field k, and let K := k(s) be the subfield generated over k by $s := t + t^{-1}$. Determine the integral closure B of A := k[s] in L.

(*Hint:* Use Proposition 1.5.2 and compute. Perhaps treat the case char(k) = 2 separately.)