Number Theory I

Exercise sheet 10

DIFFERENT AND DISCRIMINANT

1. Let L/K be a Galois extension of number fields with Galois group Γ , and let \mathfrak{b} be a fractional ideal of \mathcal{O}_L . Show that

$$\operatorname{Nm}_{L/K}(\mathfrak{b}) = K \cap \prod_{\gamma \in \Gamma} {}^{\gamma} \mathfrak{b}.$$

- 2. Let A be a Dedekind ring with quotient field K. Take finite separable extensions M/L/K and let C/B/A be the respective integral closures of A.
 - (a) Prove that $\operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(\mathfrak{c})) = \operatorname{Nm}_{M/K}(\mathfrak{c})$ for any fractional ideal \mathfrak{c} of C.
 - (b) Prove that $\operatorname{diff}_{C/A} = \operatorname{diff}_{C/B} \cdot \operatorname{diff}_{B/A}$.
- 3. For $K := \mathbb{Q}(\sqrt[3]{2})$ compute the prime factorization of the different $\dim_{\mathcal{O}_K/\mathbb{Z}}$ and verify that a prime ideal of \mathcal{O}_K divides $\dim_{\mathcal{O}_K/\mathbb{Z}}$ if and only if it is ramified over \mathbb{Z} .
- 4. Let $K := \mathbb{Q}(\alpha)$ for $\alpha := \sqrt[3]{539}$.
 - (a) Using Exercise 5 of Sheet 8, show that (7) and (11) are totally ramified in \mathcal{O}_K . Let \mathfrak{p}_7 and \mathfrak{p}_{11} denote the prime ideals above (7) and (11), respectively.
 - (b) Using the discriminant, show that $\mathcal{O}_K = \alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$, where $\beta := \frac{77}{\alpha}$ and $\gamma := \frac{1+2\alpha+\beta}{3}$, and that $\operatorname{disc}(\mathcal{O}_K) = -3 \cdot 7^2 \cdot 11^2$.
 - (c) Show that $3\mathcal{O}_K = \mathfrak{p}_3^2 \mathfrak{p}_3'$ for distinct prime ideals \mathfrak{p}_3 and \mathfrak{p}_3' .
 - (d) Show that the different of \mathcal{O}_K/\mathbb{Z} is $\mathfrak{p}_3\mathfrak{p}_7^2\mathfrak{p}_{11}^2$.
 - *(e) Using the norm, show that $\operatorname{diff}_{\mathcal{O}_K/\mathbb{Z}}$ is not principal and conclude that \mathcal{O}_K is not generated by one element over \mathbb{Z} .