D-MATH
Prof. Richard Pink

Solutions 10

Different and discriminant

1. Let L / K be a Galois extension of number fields with Galois group Γ, and let \mathfrak{b} be a fractional ideal of \mathcal{O}_{L}. Show that

$$
\operatorname{Nm}_{L / K}(\mathfrak{b})=K \cap \prod_{\gamma \in \Gamma}{ }^{\gamma} \mathfrak{b}
$$

Solution: For any fractional ideal \mathfrak{b} of \mathcal{O}_{L} we set $N(\mathfrak{b}):=K \cap \prod_{\gamma \in \Gamma}{ }^{\gamma} \mathfrak{b}$, which by construction is an A-submodule of K. Since $\operatorname{Nm}_{L / K}(\mathfrak{b})$ is the fractional ideal of \mathcal{O}_{K} that is generated by the elements $\operatorname{Nm}_{L / K}(b)=\prod_{\gamma \in \Gamma}{ }^{\gamma} b$ for all $b \in \mathfrak{b}$, and all these lie in $N(\mathfrak{b})$, we have $\operatorname{Nm}_{L / K}(b) \subset N(\mathfrak{b})$. In particular $N(\mathfrak{b})$ is non-zero.
Also, by construction we have $1=\operatorname{Nm}_{L / K}(1) \in \operatorname{Nm}_{L / K}\left(\mathcal{O}_{L}\right) \subset \mathcal{O}_{K}$ and therefore $\mathrm{Nm}_{L / K}\left(\mathcal{O}_{L}\right)=\mathcal{O}_{K}$. The multiplicativity of the relative norm thus implies that

$$
\mathcal{O}_{K}=\operatorname{Nm}_{L / K}\left(\mathcal{O}_{L}\right)=\operatorname{Nm}_{L / K}(\mathfrak{b}) \cdot \operatorname{Nm}_{L / K}\left(\mathfrak{b}^{-1}\right) \subset N(\mathfrak{b}) \cdot N\left(\mathfrak{b}^{-1}\right) .
$$

On the other hand we compute that
$N(\mathfrak{b}) \cdot N\left(\mathfrak{b}^{-1}\right)=\left(K \cap \prod_{\gamma \in \Gamma}{ }^{\gamma} \mathfrak{b}\right) \cdot\left(K \cap \prod_{\gamma \in \Gamma}{ }^{\gamma} \mathfrak{b}^{-1}\right) \subset K \cap \prod_{\gamma \in \Gamma}{ }^{\gamma} \mathfrak{b}^{\gamma} \mathfrak{b}^{-1}=K \cap \mathcal{O}_{L}=\mathcal{O}_{K}$.
In particular this shows that $N(\mathfrak{b}) \subset \frac{1}{a} \mathcal{O}_{K}$ for any $a \in N\left(\mathfrak{b}^{-1}\right) \backslash\{0\}$; hence $N(\mathfrak{b})$ is a fractional ideal of \mathcal{O}_{K}. Also, together we conclude that the inclusion

$$
\mathrm{Nm}_{L / K}(\mathfrak{b}) \cdot \mathrm{Nm}_{L / K}\left(\mathfrak{b}^{-1}\right) \subset N(\mathfrak{b}) \cdot N\left(\mathfrak{b}^{-1}\right)
$$

must be an equality. Thus the inclusion of fractional ideals $\operatorname{Nm}_{L / K}(\mathfrak{b}) \subset N(\mathfrak{b})$ is an equality, as desired.
2. Let A be a Dedekind ring with quotient field K. Take finite separable extensions $M / L / K$ and let $C / B / A$ be the respective integral closures of A.
(a) Prove that $\mathrm{Nm}_{L / K}\left(\mathrm{Nm}_{M / L}(\mathfrak{c})\right)=\mathrm{Nm}_{M / K}(\mathfrak{c})$ for any fractional ideal \mathfrak{c} of C.
(b) Prove that $\operatorname{diff}_{C / A}=\operatorname{diff}_{C / B} \cdot \operatorname{diff}_{B / A}$.

Solution:
(a) For any fractional ideal \mathfrak{c} of C and any $x \in M^{\times}$we have

$$
\begin{aligned}
\operatorname{Nm}_{L / K}\left(\operatorname{Nm}_{M / L}(x \mathfrak{c})\right) & =\operatorname{Nm}_{L / K}\left(\operatorname{Nm}_{M / L}(x) \cdot \operatorname{Nm}_{M / L}(\mathfrak{c})\right) \\
& =\operatorname{Nm}_{L / K}\left(\operatorname{Nm}_{M / L}(x)\right) \cdot \operatorname{Nm}_{L / K}\left(\operatorname{Nm}_{M / L}(\mathfrak{c})\right) \\
& =\operatorname{Nm}_{M / K}(x) \cdot \operatorname{Nm}_{L / K}\left(\operatorname{Nm}_{M / L}(\mathfrak{c})\right)
\end{aligned}
$$

and

$$
\left.\operatorname{Nm}_{M / K}(x \mathfrak{c})\right)=\operatorname{Nm}_{M / K}(x) \cdot \operatorname{Nm}_{M / K}(\mathfrak{c})
$$

Since any fractional ideal of C can be written in the form $x \mathfrak{c}$ for an $x \in M^{\times}$ and a non-zero ideal $\mathfrak{c} \subset C$, it suffices to prove the desired formula in the case $\mathfrak{c} \subset C$.
In that case choose $z \in \mathfrak{c} \backslash\{0\}$ and set $x:=\operatorname{Nm}_{M / K}(z)$. Since $\mathfrak{c} \subset C$ we then have $x \in \mathfrak{c} \backslash\{0\}$ and can therefore write $\mathfrak{c}=(x, w)$ for some $w \in M$. By the lemma from $\S 6.6$ we then have

$$
\operatorname{Nm}_{M / K}(\mathfrak{c})=\left(x, \operatorname{Nm}_{M / K}(w)\right) .
$$

On the other hand we have $y:=\operatorname{Nm}_{M / L}(z) \in \operatorname{Nm}_{M / L}(\mathfrak{c})$ and therefore $\mathrm{Nm}_{M / L}(\mathfrak{c})=\left(y, \mathrm{Nm}_{M / L}(w)\right)$ by the same lemma. Since $x=\mathrm{Nm}_{M / K}(z)=$ $\operatorname{Nm}_{L / K}(y) \in \operatorname{Nm}_{L / K}\left(\operatorname{Nm}_{M / L}(\mathfrak{c})\right)$, using the same lemma again implies that

$$
\operatorname{Nm}_{L / K}\left(\operatorname{Nm}_{M / L}(\mathfrak{c})\right)=\left(x, \operatorname{Nm}_{K / L}\left(\operatorname{Nm}_{M / L}(w)\right)\right)=\left(x, \operatorname{Nm}_{M / K}(w)\right)
$$

The desired equality follows.
(b) For any element $z \in M$ we have $z \in \operatorname{diff}_{C / A}^{-1}$ if and only if

$$
\begin{aligned}
& \forall c \in C: \operatorname{Tr}_{M / K}(c z) \in A \\
\Longleftrightarrow & \forall c \in C: \forall b \in B: \operatorname{Tr}_{M / K}(b c z) \in A \\
\Longleftrightarrow & \forall c \in C: \forall b \in B: \operatorname{Tr}_{L / K}\left(\operatorname{Tr}_{M / L}(b c z)\right) \in A \\
\Longleftrightarrow & \forall c \in C: \forall b \in B: \operatorname{Tr}_{L / K}\left(b \operatorname{Tr}_{M / L}(c z)\right) \in A \\
\Longleftrightarrow & \forall c \in C: \operatorname{Tr}_{M / L}(c z) \in \operatorname{diff}_{B / A}^{-1}
\end{aligned}
$$

Since $\operatorname{Tr}_{M / L}$ is L-linear, multiplying by diff ${ }_{B / A}^{ \pm 1}$ shows that the last condition is equivalent to

$$
\forall y \in C \cdot \operatorname{diff}_{B / A}: \operatorname{Tr}_{M / L}(y z) \in B
$$

That in turn is equivalent to

$$
\begin{aligned}
& \forall y \in \operatorname{diff}_{B / A}: \forall c \in C: \operatorname{Tr}_{M / L}(c y z) \in B \\
\Longleftrightarrow & \forall y \in \operatorname{diff}_{B / A}: y z \in \operatorname{diff}_{C / B}^{-1} \\
\Longleftrightarrow & \operatorname{diff}_{B / A} \cdot z \in \operatorname{diff}_{C / B}^{-1} \\
\Longleftrightarrow & z \in \operatorname{diff}_{B / A}^{-1} \operatorname{diff}_{C / B}^{-1} .
\end{aligned}
$$

Therefore $\operatorname{diff}_{C / A}^{-1}=\operatorname{diff}_{B / A}^{-1} \operatorname{diff}_{C / B}^{-1}$, from which the claim follows.
3. For $K:=\mathbb{Q}(\sqrt[3]{2})$ compute the prime factorization of the different diff $\mathcal{O}_{K} / \mathbb{Z}$ and verify that a prime ideal of \mathcal{O}_{K} divides diff $\mathcal{O}_{K / \mathbb{Z}}$ if and only if it is ramified over \mathbb{Z}.
Solution: By Exercise 3 of Sheet 8 we have $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ with $\omega:=\sqrt[3]{2}$. The minimal polynomial of ω over \mathbb{Q} is $f(X):=X^{3}-2$; hence by Proposition 6.7.3 we have

$$
\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}=\left(\frac{d f}{d X}(\omega)\right)=\left(3 \omega^{2}\right)
$$

In the solution of Exercise 4 on Sheet 8, we calculated that $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong \mathbb{F}_{2}[X] /(X)^{3}$ and $\mathcal{O}_{K} / 3 \mathcal{O}_{K} \cong \mathbb{F}_{3}[X] /(X-2)^{3}$. Therefore $2 \mathcal{O}_{K}=\mathfrak{p}_{2}^{3}$ and $3 \mathcal{O}_{K}=\mathfrak{p}_{3}^{3}$ for the prime ideals $\mathfrak{p}_{2}:=(2, \omega)=(\omega)$ and $\mathfrak{p}_{3}:=(3, \omega-2)$. The prime factorization of the different is therefore $\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}=\mathfrak{p}_{3}^{3} \mathfrak{p}_{2}^{2}$.
In particular, the primes \mathfrak{p}_{2} and \mathfrak{p}_{3} are totally ramified over \mathbb{Z} and divide the different. Any other prime \mathfrak{p} of \mathcal{O}_{K} lies over a rational prime $p \neq 2,3$. The polynomial $f(X)=X^{3}-2$ is then separable modulo p. Thus its decomposition in $\mathbb{F}_{p}[X]$ has no multiple factors, and so all exponents in the prime factorization of $p \mathcal{O}_{K}$ are 1 . Thus \mathfrak{p} is unramified over \mathbb{Z} and does not divide the different. Together this shows that a prime of \mathcal{O}_{K} is ramified over \mathbb{Z} if and only if it divides diff $\mathcal{O}_{K} / \mathbb{Z}$.
4. Let $K:=\mathbb{Q}(\alpha)$ for $\alpha:=\sqrt[3]{539}$.
(a) Using Exercise 5 of Sheet 8, show that (7) and (11) are totally ramified in \mathcal{O}_{K}. Let \mathfrak{p}_{7} and \mathfrak{p}_{11} denote the prime ideals above (7) and (11), respectively.
(b) Using the discriminant, show that $\mathcal{O}_{K}=\alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$, where $\beta:=\frac{77}{\alpha}$ and $\gamma:=\frac{1+2 \alpha+\beta}{3}$, and that $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-3 \cdot 7^{2} \cdot 11^{2}$.
(c) Show that $3 \mathcal{O}_{K}=\mathfrak{p}_{3}^{2} \mathfrak{p}_{3}^{\prime}$ for distinct prime ideals \mathfrak{p}_{3} and $\mathfrak{p}_{3}^{\prime}$.
(d) Show that the different of $\mathcal{O}_{K} / \mathbb{Z}$ is $\mathfrak{p}_{3} \mathfrak{p}_{7}^{2} \mathfrak{p}_{11}^{2}$.
*(e) Using the norm, show that diff $\mathcal{O}_{K / \mathbb{Z}}$ is not principal and conclude that \mathcal{O}_{K} is not generated by one element over \mathbb{Z}.

Solution:

(a) The minimal polynomial of α is $X^{3}-7^{2} \cdot 11$, which is Eisenstein at 11 and therefore irreducible. Thus $[K / \mathbb{Q}]=3$. On the other hand K is also generated by $\beta:=\frac{77}{\alpha}$ which has minimal polynomial $X^{3}-7 \cdot 11^{2}$ that is Eisenstein at 7 . By Exercise 5 of Sheet 8, the primes (7) and (11) are therefore totally ramified in \mathcal{O}_{K} with decompositions $7 \mathcal{O}_{K}=\mathfrak{p}_{7}^{3}$ for $\mathfrak{p}_{7}:=(7, \beta)$ and $11 \mathcal{O}_{K}=\mathfrak{p}_{11}^{3}$ for $\mathfrak{p}_{11}:=(11, \alpha)$.
(b) Since $\beta=\frac{\alpha^{2}}{7}$, the elements α, β, γ form a basis of K over \mathbb{Q}. We compute the multiplication table for pairs of basis elements:

	α	β	γ
α	7β	$77=-154 \alpha-77 \beta+231 \gamma$	$-51 \alpha-21 \beta+77 \gamma$
β	77	11α	$-99 \alpha-51 \beta+154 \gamma$
γ	$-51 \alpha-21 \beta+77 \gamma$	$-99 \alpha-51 \beta+154 \gamma$	$-67 \alpha-31 \beta+103 \gamma$

This table shows that $A:=\alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$ is a subring. Since A is finitely generated as a \mathbb{Z}-module, it is integral over \mathbb{Z} and hence contained in \mathcal{O}_{K}. Next, we see from the minimal polynomials of α and β that $\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)=$ $\operatorname{Tr}_{K / \mathbb{Q}}(\beta)=0$. By \mathbb{Q}-linearity this implies that $\operatorname{Tr}_{K / \mathbb{Q}}(\gamma)=\frac{1}{3} \operatorname{Tr}_{K / \mathbb{Q}}(1)=1$. Using the multiplication table we can now calculate the discriminant of A :

$$
\begin{aligned}
\operatorname{disc}(A) & =\operatorname{det}\left(\begin{array}{ccc}
\operatorname{Tr}\left(\alpha^{2}\right) & \operatorname{Tr}(\alpha \beta) & \operatorname{Tr}(\alpha \gamma) \\
\operatorname{Tr}(\beta \alpha) & \operatorname{Tr}\left(\beta^{2}\right) & \operatorname{Tr}(\beta \gamma) \\
\operatorname{Tr}(\gamma \alpha) & \operatorname{Tr}(\gamma \beta) & \operatorname{Tr}\left(\gamma^{2}\right)
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
0 & 231 & 77 \\
231 & 0 & 154 \\
77 & 154 & 103
\end{array}\right)=-17787=-3 \cdot 7^{2} \cdot 11^{2} .
\end{aligned}
$$

From the lecture course, we know that $\operatorname{disc}(A)=\left[\mathcal{O}_{K}: A\right]^{2} \operatorname{disc}\left(\mathcal{O}_{K}\right)$. Furthermore, both 7 and 11 are ramified in \mathcal{O}_{K} by (a) and therefore divide $\operatorname{disc}\left(\mathcal{O}_{K}\right)$ by Theorem 6.8.4 (a). Thus $\left[\mathcal{O}_{K}: \mathfrak{a}\right]^{2}$ must divide $3 \cdot 7 \cdot 11$, which is only possible for $\left[\mathcal{O}_{K}: \mathfrak{a}\right]=1$. Therefore $A=\mathcal{O}_{K}$ with the stated discriminant, as desired.
(c) The multiplication table in (b) shows that $\alpha \equiv \gamma^{2}-\gamma-1 \bmod 3 \mathcal{O}_{K}$ and $\beta \equiv \gamma^{2}-\gamma+1 \bmod 3 \mathcal{O}_{K}$. Thus $\mathcal{O}_{K} / 3 \mathcal{O}_{K}$ is generated as an \mathbb{F}_{3}-algebra by the residue class of γ. Another direct calculation using the multiplication table shows that $\gamma^{3}-\gamma^{2} \equiv 0 \bmod 3 \mathcal{O}_{K}$. Therefore $\mathcal{O}_{K} / 3 \mathcal{O}_{K} \cong \mathbb{F}_{3}[X] /\left(X^{3}-X^{2}\right)=$ $\mathbb{F}_{3}[X] /\left(X^{2}(X-1)\right)$, where the residue class of γ corresponds to the residue class of X. Thus the maximal ideals (X) and $(X-1)$ of the right hand side correspond to the maximal ideals $\mathfrak{p}_{3}:=(3, \gamma)$ and $\mathfrak{p}_{3}^{\prime}:=(3, \gamma-1)$ of \mathcal{O}_{K}, both with residue fields isomorphic to \mathbb{F}_{3}. Since $\mathfrak{p}_{3}^{2} \mathfrak{p}_{3}^{\prime} / 3 \mathcal{O}_{K}$ maps to the ideal $(X)^{2}(X-1)=\left(X^{3}-X^{2}\right)=(0) \subset \mathbb{F}_{3}[X] /\left(X^{3}-X^{2}\right)$ via the isomorphism given above, we have $\mathfrak{p}_{3}^{2} \mathfrak{p}_{3}^{\prime} \subset 3 \mathcal{O}_{K}$. As both sides have the same norm, we deduce the desired equality.
(d) By Theorem 6.7.6 a prime \mathfrak{p} of \mathcal{O}_{K} divides the different diff $\mathcal{O}_{K / \mathbb{Z}}$ if and only if \mathfrak{p} is ramified over \mathbb{Z}. By the multiplicativity of the norm $\operatorname{Norm}(\mathfrak{p})$ then divides $\operatorname{Norm}\left(\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}\right)$, which is equal to $\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right|=3 \cdot 7^{2} \cdot 11^{2}$ by Proposition 6.8.2 and part (b). In view of parts (a) and (c) this leaves only the possibilities $\mathfrak{p}=\mathfrak{p}_{3}, \mathfrak{p}_{7}, \mathfrak{p}_{11}$. But the norm of any prime ideal is the order of its residue field, and the residue field is a prime field in each of these cases. Thus the prime factorization of $\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right|$ implies that $\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}=\mathfrak{p}_{3} \mathfrak{p}_{7}^{2} \mathfrak{p}_{11}^{2}$.
*(e) By (a) we have $(\alpha)^{3}=\left(\alpha^{3}\right)=\left(7^{2} \cdot 11\right)=\mathfrak{p}_{7}^{6} \mathfrak{p}_{11}^{3}$. By unique prime factorization of ideals this implies that $(\alpha)=\mathfrak{p}_{7}^{2} \mathfrak{p}_{11}$. Using (d) it follows that diff $\mathcal{O}_{K} / \mathbb{Z}=$ $\mathfrak{p}_{3} \mathfrak{p}_{7}^{2} \mathfrak{p}_{11}^{2}=\alpha \mathfrak{p}_{3} \mathfrak{p}_{11}$, so diff $\mathcal{O}_{K} / \mathbb{Z}$ is principal if and only if $\mathfrak{p}_{3} \mathfrak{p}_{11}$ is principal.
Suppose that $\mathfrak{p}_{3} \mathfrak{p}_{11}=(\xi)$ for some element $\xi \in \mathcal{O}_{K}$. Then $\left|\operatorname{Norm}_{K / \mathbb{Q}}(\xi)\right|=$ $\operatorname{Norm}\left(\mathfrak{p}_{3} \mathfrak{p}_{11}\right)=3 \cdot 11$, and so $\operatorname{Norm}_{K / \mathbb{Q}}(\xi)= \pm 33$. We will show that this is impossible. Write $\xi=a \alpha+b \beta+c \gamma$ with $a, b, c \in \mathbb{Z}$. The Galois conjugates of
α, β, and γ are given in the following table, where ζ_{3} is a primitive 3rd root of unity:

$\varphi \in \operatorname{Hom}_{\mathbb{Q}}(K, \overline{\mathbb{Q}})$	$\varphi(\alpha)$	$\varphi(\beta)$	$\varphi(\gamma)$
id $: \alpha \mapsto \alpha$	α	β	γ
$\varphi_{1}: \alpha \mapsto \zeta_{3} \alpha$	$\zeta_{3} \alpha$	$\zeta_{3}^{2} \beta$	$\frac{1+2 \zeta_{3} \alpha+\zeta_{3}^{2} \beta}{3}$
$\varphi_{2}: \alpha \mapsto \zeta_{3}^{2} \alpha$	$\zeta_{3}^{2} \alpha$	$\zeta_{3} \beta$	$\frac{1+2 \zeta_{3}^{2} \alpha+\zeta_{3} \beta}{3}$

We calculate

$$
\begin{aligned}
\operatorname{Norm}_{K / \mathbb{Q}}(\xi)= & \xi \cdot \varphi_{1}(\xi) \cdot \varphi_{2}(\xi) \\
= & 7^{2} \cdot 11 a^{3}+7 \cdot 11^{2} b^{3}+2 \cdot 7^{2} \cdot 11 a^{2} c-7 \cdot 11 a b c+7 \cdot 11^{2} b^{2} c \\
& +3^{2} \cdot 7 \cdot 11 a c^{2}+3 \cdot 7 \cdot 11 b c^{2}+2 \cdot 3 \cdot 29 c^{3} .
\end{aligned}
$$

This is congruent to $-c^{3} \bmod (7)$. Since the only cubes in \mathbb{F}_{7} are 0 and ± 1, it follows that $\operatorname{Norm}_{K / \mathbb{Q}}(\xi)$ is congruent to 0 or ± 1 modulo (7). As each of these residue classes is distinct from $\pm 33 \equiv \pm 5 \bmod (7)$, we have obtained the desired contradiction. Therefore no element $\xi \in \mathcal{O}_{K}$ of norm ± 33 exists and $\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}$ is not principal in \mathcal{O}_{K}.
Finally, if $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ and $f(X)$ is the minimal polynomial of ω over \mathbb{Q}, by Proposition 6.7.3 $\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}=\left(\frac{d f}{d X}(\omega)\right)$. Since $\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}$ is not a principal ideal, it follows that \mathcal{O}_{K} is not generated by a single element over \mathbb{Z}.

