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Solutions 10

Different and discriminant

1. Let L/K be a Galois extension of number fields with Galois group Γ, and let b be
a fractional ideal of OL. Show that

NmL/K(b) = K ∩
∏
γ∈Γ

γb.

Solution: For any fractional ideal b of OL we set N(b) := K ∩
∏

γ∈Γ
γb, which by

construction is an A-submodule of K. Since NmL/K(b) is the fractional ideal of
OK that is generated by the elements NmL/K(b) =

∏
γ∈Γ

γb for all b ∈ b, and all
these lie in N(b), we have NmL/K(b) ⊂ N(b). In particular N(b) is non-zero.

Also, by construction we have 1 = NmL/K(1) ∈ NmL/K(OL) ⊂ OK and therefore
NmL/K(OL) = OK . The multiplicativity of the relative norm thus implies that

OK = NmL/K(OL) = NmL/K(b) · NmL/K(b
−1) ⊂ N(b) ·N(b−1).

On the other hand we compute that

N(b) ·N(b−1) =
(
K ∩

∏
γ∈Γ

γb
)
·
(
K ∩

∏
γ∈Γ

γb−1
)
⊂ K ∩

∏
γ∈Γ

γbγb−1 = K ∩OL = OK .

In particular this shows that N(b) ⊂ 1
a
OK for any a ∈ N(b−1)∖ {0}; hence N(b)

is a fractional ideal of OK . Also, together we conclude that the inclusion

NmL/K(b) · NmL/K(b
−1) ⊂ N(b) ·N(b−1)

must be an equality. Thus the inclusion of fractional ideals NmL/K(b) ⊂ N(b) is
an equality, as desired.

2. Let A be a Dedekind ring with quotient field K. Take finite separable extensions
M/L/K and let C/B/A be the respective integral closures of A.

(a) Prove that NmL/K(NmM/L(c)) = NmM/K(c) for any fractional ideal c of C.

(b) Prove that diffC/A = diffC/B · diffB/A.

Solution:
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(a) For any fractional ideal c of C and any x ∈ M× we have

NmL/K(NmM/L(xc)) = NmL/K

(
NmM/L(x) · NmM/L(c)

)
= NmL/K(NmM/L(x)) · NmL/K(NmM/L(c))

= NmM/K(x) · NmL/K(NmM/L(c))

and
NmM/K(xc)) = NmM/K(x) · NmM/K(c).

Since any fractional ideal of C can be written in the form xc for an x ∈ M×

and a non-zero ideal c ⊂ C, it suffices to prove the desired formula in the
case c ⊂ C.

In that case choose z ∈ c∖{0} and set x := NmM/K(z). Since c ⊂ C we then
have x ∈ c∖ {0} and can therefore write c = (x,w) for some w ∈ M . By the
lemma from §6.6 we then have

NmM/K(c) = (x,NmM/K(w)).

On the other hand we have y := NmM/L(z) ∈ NmM/L(c) and therefore
NmM/L(c) = (y,NmM/L(w)) by the same lemma. Since x = NmM/K(z) =
NmL/K(y) ∈ NmL/K(NmM/L(c)), using the same lemma again implies that

NmL/K(NmM/L(c)) = (x,NmK/L(NmM/L(w))) = (x,NmM/K(w)).

The desired equality follows.

(b) For any element z ∈ M we have z ∈ diff−1
C/A if and only if

∀ c ∈ C : TrM/K(cz) ∈ A

⇐⇒ ∀ c ∈ C : ∀ b ∈ B : TrM/K(bcz) ∈ A

⇐⇒ ∀ c ∈ C : ∀ b ∈ B : TrL/K(TrM/L(bcz)) ∈ A

⇐⇒ ∀ c ∈ C : ∀ b ∈ B : TrL/K(bTrM/L(cz)) ∈ A

⇐⇒ ∀ c ∈ C : TrM/L(cz) ∈ diff−1
B/A .

Since TrM/L is L-linear, multiplying by diff±1
B/A shows that the last condition

is equivalent to

∀ y ∈ C· diffB/A : TrM/L(yz) ∈ B.

That in turn is equivalent to

∀ y ∈ diffB/A : ∀ c ∈ C : TrM/L(cyz) ∈ B

⇐⇒ ∀ y ∈ diffB/A : yz ∈ diff−1
C/B

⇐⇒ diffB/A ·z ∈ diff−1
C/B

⇐⇒ z ∈ diff−1
B/A diff−1

C/B .

Therefore diff−1
C/A = diff−1

B/A diff−1
C/B, from which the claim follows.
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3. For K := Q( 3
√
2) compute the prime factorization of the different diffOK/Z and

verify that a prime ideal of OK divides diffOK/Z if and only if it is ramified over Z.
Solution: By Exercise 3 of Sheet 8 we have OK = Z[ω] with ω := 3

√
2. The

minimal polynomial of ω over Q is f(X) := X3 − 2; hence by Proposition 6.7.3
we have

diffOK/Z =
(

df
dX

(ω)
)
=

(
3ω2

)
.

In the solution of Exercise 4 on Sheet 8, we calculated thatOK/2OK
∼= F2[X]/(X)3

and OK/3OK
∼= F3[X]/(X − 2)3. Therefore 2OK = p32 and 3OK = p33 for the

prime ideals p2 := (2, ω) = (ω) and p3 := (3, ω − 2). The prime factorization of
the different is therefore diffOK/Z = p33p

2
2.

In particular, the primes p2 and p3 are totally ramified over Z and divide the
different. Any other prime p of OK lies over a rational prime p ̸= 2, 3. The
polynomial f(X) = X3− 2 is then separable modulo p. Thus its decomposition in
Fp[X] has no multiple factors, and so all exponents in the prime factorization of
pOK are 1. Thus p is unramified over Z and does not divide the different. Together
this shows that a prime of OK is ramified over Z if and only if it divides diffOK/Z.

4. Let K := Q(α) for α := 3
√
539.

(a) Using Exercise 5 of Sheet 8, show that (7) and (11) are totally ramified in OK .
Let p7 and p11 denote the prime ideals above (7) and (11), respectively.

(b) Using the discriminant, show that OK = αZ⊕ βZ⊕ γZ, where β := 77
α

and

γ := 1+2α+β
3

, and that disc(OK) = −3 · 72 · 112.
(c) Show that 3OK = p23p

′
3 for distinct prime ideals p3 and p′3.

(d) Show that the different of OK/Z is p3p
2
7p

2
11.

*(e) Using the norm, show that diffOK/Z is not principal and conclude that OK is
not generated by one element over Z.

Solution:

(a) The minimal polynomial of α is X3 − 72 · 11, which is Eisenstein at 11 and
therefore irreducible. Thus [K/Q] = 3. On the other handK is also generated
by β := 77

α
which has minimal polynomial X3− 7 · 112 that is Eisenstein at 7.

By Exercise 5 of Sheet 8, the primes (7) and (11) are therefore totally ramified
in OK with decompositions 7OK = p37 for p7 := (7, β) and 11OK = p311 for
p11 := (11, α).

(b) Since β = α2

7
, the elements α, β, γ form a basis of K over Q. We compute

the multiplication table for pairs of basis elements:

α β γ

α 7β 77 = −154α− 77β + 231γ −51α− 21β + 77γ
β 77 11α −99α− 51β + 154γ
γ −51α− 21β + 77γ −99α− 51β + 154γ −67α− 31β + 103γ
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This table shows that A := αZ ⊕ βZ ⊕ γZ is a subring. Since A is finitely
generated as a Z-module, it is integral over Z and hence contained in OK .
Next, we see from the minimal polynomials of α and β that TrK/Q(α) =
TrK/Q(β) = 0. By Q-linearity this implies that TrK/Q(γ) =

1
3
TrK/Q(1) = 1.

Using the multiplication table we can now calculate the discriminant of A:

disc(A) = det

Tr(α2) Tr(αβ) Tr(αγ)
Tr(βα) Tr(β2) Tr(βγ)
Tr(γα) Tr(γβ) Tr(γ2)


= det

 0 231 77
231 0 154
77 154 103

 = −17787 = −3 · 72 · 112.

From the lecture course, we know that disc(A) = [OK : A]2 disc(OK). Fur-
thermore, both 7 and 11 are ramified in OK by (a) and therefore divide
disc(OK) by Theorem 6.8.4 (a). Thus [OK : a]2 must divide 3 · 7 · 11, which
is only possible for [OK : a] = 1. Therefore A = OK with the stated discrim-
inant, as desired.

(c) The multiplication table in (b) shows that α ≡ γ2 − γ − 1 mod 3OK and
β ≡ γ2−γ+1 mod 3OK . ThusOK/3OK is generated as an F3-algebra by the
residue class of γ. Another direct calculation using the multiplication table
shows that γ3−γ2 ≡ 0 mod 3OK . ThereforeOK/3OK

∼= F3[X]/(X3−X2) =
F3[X]/(X2(X − 1)), where the residue class of γ corresponds to the residue
class of X. Thus the maximal ideals (X) and (X − 1) of the right hand side
correspond to the maximal ideals p3 := (3, γ) and p′3 := (3, γ − 1) of OK ,
both with residue fields isomorphic to F3. Since p

2
3p

′
3/3OK maps to the ideal

(X)2(X − 1) = (X3 − X2) = (0) ⊂ F3[X]/(X3 − X2) via the isomorphism
given above, we have p23p

′
3 ⊂ 3OK . As both sides have the same norm, we

deduce the desired equality.

(d) By Theorem 6.7.6 a prime p of OK divides the different diffOK/Z if and only if
p is ramified over Z. By the multiplicativity of the norm Norm(p) then divides
Norm(diffOK/Z), which is equal to | disc(OK)| = 3·72 ·112 by Proposition 6.8.2
and part (b). In view of parts (a) and (c) this leaves only the possibilities
p = p3, p7, p11. But the norm of any prime ideal is the order of its residue
field, and the residue field is a prime field in each of these cases. Thus the
prime factorization of | disc(OK)| implies that diffOK/Z = p3p

2
7p

2
11.

*(e) By (a) we have (α)3 = (α3) = (72 ·11) = p67p
3
11. By unique prime factorization

of ideals this implies that (α) = p27p11. Using (d) it follows that diffOK/Z =
p3p

2
7p

2
11 = αp3p11, so diffOK/Z is principal if and only if p3p11 is principal.

Suppose that p3p11 = (ξ) for some element ξ ∈ OK . Then |NormK/Q(ξ)| =
Norm(p3p11) = 3 · 11, and so NormK/Q(ξ) = ±33. We will show that this is
impossible. Write ξ = aα+ bβ+ cγ with a, b, c ∈ Z. The Galois conjugates of
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α, β, and γ are given in the following table, where ζ3 is a primitive 3rd root
of unity:

φ ∈ HomQ(K, Q̄) φ(α) φ(β) φ(γ)

id : α 7→ α α β γ

φ1 : α 7→ ζ3α ζ3α ζ23β
1+2ζ3α+ζ23β

3

φ2 : α 7→ ζ23α ζ23α ζ3β
1+2ζ23α+ζ3β

3

We calculate

NormK/Q(ξ) = ξ · φ1(ξ) · φ2(ξ)

= 72 · 11a3 + 7 · 112b3 + 2 · 72 · 11a2c− 7 · 11abc+ 7 · 112b2c
+ 32 · 7 · 11ac2 + 3 · 7 · 11bc2 + 2 · 3 · 29c3.

This is congruent to −c3 mod (7). Since the only cubes in F7 are 0 and ±1,
it follows that NormK/Q(ξ) is congruent to 0 or ±1 modulo (7). As each of
these residue classes is distinct from ±33 ≡ ±5 mod (7), we have obtained
the desired contradiction. Therefore no element ξ ∈ OK of norm ±33 exists
and diffOK/Z is not principal in OK .

Finally, if OK = Z[ω] and f(X) is the minimal polynomial of ω over Q, by
Proposition 6.7.3 diffOK/Z = ( df

dX
(ω)). Since diffOK/Z is not a principal ideal,

it follows that OK is not generated by a single element over Z.
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