Number Theory I

Solutions 10

DIFFERENT AND DISCRIMINANT

1. Let L/K be a Galois extension of number fields with Galois group Γ , and let \mathfrak{b} be a fractional ideal of \mathcal{O}_L . Show that

$$\operatorname{Nm}_{L/K}(\mathfrak{b}) = K \cap \prod_{\gamma \in \Gamma} {}^{\gamma} \mathfrak{b}.$$

Solution: For any fractional ideal \mathfrak{b} of \mathcal{O}_L we set $N(\mathfrak{b}) := K \cap \prod_{\gamma \in \Gamma} {}^{\gamma} \mathfrak{b}$, which by construction is an A-submodule of K. Since $\operatorname{Nm}_{L/K}(\mathfrak{b})$ is the fractional ideal of \mathcal{O}_K that is generated by the elements $\operatorname{Nm}_{L/K}(b) = \prod_{\gamma \in \Gamma} {}^{\gamma} b$ for all $b \in \mathfrak{b}$, and all these lie in $N(\mathfrak{b})$, we have $\operatorname{Nm}_{L/K}(b) \subset N(\mathfrak{b})$. In particular $N(\mathfrak{b})$ is non-zero.

Also, by construction we have $1 = \operatorname{Nm}_{L/K}(1) \in \operatorname{Nm}_{L/K}(\mathcal{O}_L) \subset \mathcal{O}_K$ and therefore $\operatorname{Nm}_{L/K}(\mathcal{O}_L) = \mathcal{O}_K$. The multiplicativity of the relative norm thus implies that

$$\mathcal{O}_K = \operatorname{Nm}_{L/K}(\mathcal{O}_L) = \operatorname{Nm}_{L/K}(\mathfrak{b}) \cdot \operatorname{Nm}_{L/K}(\mathfrak{b}^{-1}) \subset N(\mathfrak{b}) \cdot N(\mathfrak{b}^{-1}).$$

On the other hand we compute that

$$N(\mathfrak{b}) \cdot N(\mathfrak{b}^{-1}) = \left(K \cap \prod_{\gamma \in \Gamma} {}^{\gamma} \mathfrak{b} \right) \cdot \left(K \cap \prod_{\gamma \in \Gamma} {}^{\gamma} \mathfrak{b}^{-1} \right) \subset K \cap \prod_{\gamma \in \Gamma} {}^{\gamma} \mathfrak{b}^{\gamma} \mathfrak{b}^{-1} = K \cap \mathcal{O}_L = \mathcal{O}_K.$$

In particular this shows that $N(\mathfrak{b}) \subset \frac{1}{a}\mathcal{O}_K$ for any $a \in N(\mathfrak{b}^{-1}) \setminus \{0\}$; hence $N(\mathfrak{b})$ is a fractional ideal of \mathcal{O}_K . Also, together we conclude that the inclusion

$$\operatorname{Nm}_{L/K}(\mathfrak{b}) \cdot \operatorname{Nm}_{L/K}(\mathfrak{b}^{-1}) \subset N(\mathfrak{b}) \cdot N(\mathfrak{b}^{-1})$$

must be an equality. Thus the inclusion of fractional ideals $\operatorname{Nm}_{L/K}(\mathfrak{b}) \subset N(\mathfrak{b})$ is an equality, as desired.

- 2. Let A be a Dedekind ring with quotient field K. Take finite separable extensions M/L/K and let C/B/A be the respective integral closures of A.
 - (a) Prove that $\operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(\mathfrak{c})) = \operatorname{Nm}_{M/K}(\mathfrak{c})$ for any fractional ideal \mathfrak{c} of C.
 - (b) Prove that $\operatorname{diff}_{C/A} = \operatorname{diff}_{C/B} \cdot \operatorname{diff}_{B/A}$.

Solution:

(a) For any fractional ideal \mathfrak{c} of C and any $x \in M^{\times}$ we have

$$\begin{split} \operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(x\mathfrak{c})) &= \operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(x) \cdot \operatorname{Nm}_{M/L}(\mathfrak{c})) \\ &= \operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(x)) \cdot \operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(\mathfrak{c})) \\ &= \operatorname{Nm}_{M/K}(x) \cdot \operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(\mathfrak{c})) \end{split}$$

and

$$\operatorname{Nm}_{M/K}(x\mathfrak{c})) = \operatorname{Nm}_{M/K}(x) \cdot \operatorname{Nm}_{M/K}(\mathfrak{c})$$

Since any fractional ideal of C can be written in the form $x\mathfrak{c}$ for an $x \in M^{\times}$ and a non-zero ideal $\mathfrak{c} \subset C$, it suffices to prove the desired formula in the case $\mathfrak{c} \subset C$.

In that case choose $z \in \mathfrak{c} \setminus \{0\}$ and set $x := \operatorname{Nm}_{M/K}(z)$. Since $\mathfrak{c} \subset C$ we then have $x \in \mathfrak{c} \setminus \{0\}$ and can therefore write $\mathfrak{c} = (x, w)$ for some $w \in M$. By the lemma from §6.6 we then have

$$\operatorname{Nm}_{M/K}(\mathfrak{c}) = (x, \operatorname{Nm}_{M/K}(w))$$

On the other hand we have $y := \operatorname{Nm}_{M/L}(z) \in \operatorname{Nm}_{M/L}(\mathfrak{c})$ and therefore $\operatorname{Nm}_{M/L}(\mathfrak{c}) = (y, \operatorname{Nm}_{M/L}(w))$ by the same lemma. Since $x = \operatorname{Nm}_{M/K}(z) = \operatorname{Nm}_{L/K}(y) \in \operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(\mathfrak{c}))$, using the same lemma again implies that

$$\operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(\mathfrak{c})) = (x, \operatorname{Nm}_{K/L}(\operatorname{Nm}_{M/L}(w))) = (x, \operatorname{Nm}_{M/K}(w)).$$

The desired equality follows.

(b) For any element $z \in M$ we have $z \in \text{diff}_{C/A}^{-1}$ if and only if

$$\forall c \in C \colon \operatorname{Tr}_{M/K}(cz) \in A \iff \forall c \in C \colon \forall b \in B \colon \operatorname{Tr}_{M/K}(bcz) \in A \iff \forall c \in C \colon \forall b \in B \colon \operatorname{Tr}_{L/K}(\operatorname{Tr}_{M/L}(bcz)) \in A \iff \forall c \in C \colon \forall b \in B \colon \operatorname{Tr}_{L/K}(b \operatorname{Tr}_{M/L}(cz)) \in A \iff \forall c \in C \colon \operatorname{Tr}_{M/L}(cz) \in \operatorname{diff}_{B/A}^{-1}.$$

Since $\operatorname{Tr}_{M/L}$ is *L*-linear, multiplying by $\operatorname{diff}_{B/A}^{\pm 1}$ shows that the last condition is equivalent to

$$\forall y \in C \cdot \operatorname{diff}_{B/A} \colon \operatorname{Tr}_{M/L}(yz) \in B.$$

That in turn is equivalent to

$$\forall y \in \operatorname{diff}_{B/A} \colon \forall c \in C \colon \operatorname{Tr}_{M/L}(cyz) \in B$$

$$\iff \forall y \in \operatorname{diff}_{B/A} \colon yz \in \operatorname{diff}_{C/B}^{-1}$$

$$\iff diff_{B/A} \cdot z \in \operatorname{diff}_{C/B}^{-1}$$

$$\iff z \in \operatorname{diff}_{B/A}^{-1} \operatorname{diff}_{C/B}^{-1}.$$

Therefore $\operatorname{diff}_{C/A}^{-1} = \operatorname{diff}_{B/A}^{-1} \operatorname{diff}_{C/B}^{-1}$, from which the claim follows.

3. For $K := \mathbb{Q}(\sqrt[3]{2})$ compute the prime factorization of the different $\dim_{\mathcal{O}_K/\mathbb{Z}}$ and verify that a prime ideal of \mathcal{O}_K divides $\dim_{\mathcal{O}_K/\mathbb{Z}}$ if and only if it is ramified over \mathbb{Z} .

Solution: By Exercise 3 of Sheet 8 we have $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega := \sqrt[3]{2}$. The minimal polynomial of ω over \mathbb{Q} is $f(X) := X^3 - 2$; hence by Proposition 6.7.3 we have

diff_{$$\mathcal{O}_K/\mathbb{Z}$$} = $\left(\frac{df}{dX}(\omega)\right) = \left(3\omega^2\right)$.

In the solution of Exercise 4 on Sheet 8, we calculated that $\mathcal{O}_K/2\mathcal{O}_K \cong \mathbb{F}_2[X]/(X)^3$ and $\mathcal{O}_K/3\mathcal{O}_K \cong \mathbb{F}_3[X]/(X-2)^3$. Therefore $2\mathcal{O}_K = \mathfrak{p}_2^3$ and $3\mathcal{O}_K = \mathfrak{p}_3^3$ for the prime ideals $\mathfrak{p}_2 := (2, \omega) = (\omega)$ and $\mathfrak{p}_3 := (3, \omega - 2)$. The prime factorization of the different is therefore $\dim_{\mathcal{O}_K/\mathbb{Z}} = \mathfrak{p}_3^3\mathfrak{p}_2^2$.

In particular, the primes \mathfrak{p}_2 and \mathfrak{p}_3 are totally ramified over \mathbb{Z} and divide the different. Any other prime \mathfrak{p} of \mathcal{O}_K lies over a rational prime $p \neq 2, 3$. The polynomial $f(X) = X^3 - 2$ is then separable modulo p. Thus its decomposition in $\mathbb{F}_p[X]$ has no multiple factors, and so all exponents in the prime factorization of $p\mathcal{O}_K$ are 1. Thus \mathfrak{p} is unramified over \mathbb{Z} and does not divide the different. Together this shows that a prime of \mathcal{O}_K is ramified over \mathbb{Z} if and only if it divides diff_ $\mathcal{O}_K/\mathbb{Z}}$.

- 4. Let $K := \mathbb{Q}(\alpha)$ for $\alpha := \sqrt[3]{539}$.
 - (a) Using Exercise 5 of Sheet 8, show that (7) and (11) are totally ramified in \mathcal{O}_K . Let \mathfrak{p}_7 and \mathfrak{p}_{11} denote the prime ideals above (7) and (11), respectively.
 - (b) Using the discriminant, show that $\mathcal{O}_K = \alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$, where $\beta := \frac{77}{\alpha}$ and $\gamma := \frac{1+2\alpha+\beta}{3}$, and that $\operatorname{disc}(\mathcal{O}_K) = -3 \cdot 7^2 \cdot 11^2$.
 - (c) Show that $3\mathcal{O}_K = \mathfrak{p}_3^2 \mathfrak{p}_3'$ for distinct prime ideals \mathfrak{p}_3 and \mathfrak{p}_3' .
 - (d) Show that the different of \mathcal{O}_K/\mathbb{Z} is $\mathfrak{p}_3\mathfrak{p}_7^2\mathfrak{p}_{11}^2$.
 - *(e) Using the norm, show that $\operatorname{diff}_{\mathcal{O}_K/\mathbb{Z}}$ is not principal and conclude that \mathcal{O}_K is not generated by one element over \mathbb{Z} .

Solution:

- (a) The minimal polynomial of α is $X^3 7^2 \cdot 11$, which is Eisenstein at 11 and therefore irreducible. Thus $[K/\mathbb{Q}] = 3$. On the other hand K is also generated by $\beta := \frac{77}{\alpha}$ which has minimal polynomial $X^3 - 7 \cdot 11^2$ that is Eisenstein at 7. By Exercise 5 of Sheet 8, the primes (7) and (11) are therefore totally ramified in \mathcal{O}_K with decompositions $7\mathcal{O}_K = \mathfrak{p}_7^3$ for $\mathfrak{p}_7 := (7,\beta)$ and $11\mathcal{O}_K = \mathfrak{p}_{11}^3$ for $\mathfrak{p}_{11} := (11, \alpha)$.
- (b) Since $\beta = \frac{\alpha^2}{7}$, the elements α, β, γ form a basis of K over \mathbb{Q} . We compute the multiplication table for pairs of basis elements:

	α	β	γ
α	7β	$77 = -154\alpha - 77\beta + 231\gamma$	$-51\alpha - 21\beta + 77\gamma$
β	77	11α	$-99\alpha - 51\beta + 154\gamma$
γ	$-51\alpha - 21\beta + 77\gamma$	$-99\alpha - 51\beta + 154\gamma$	$-67\alpha - 31\beta + 103\gamma$

This table shows that $A := \alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$ is a subring. Since A is finitely generated as a \mathbb{Z} -module, it is integral over \mathbb{Z} and hence contained in \mathcal{O}_K . Next, we see from the minimal polynomials of α and β that $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha) =$ $\operatorname{Tr}_{K/\mathbb{Q}}(\beta) = 0$. By \mathbb{Q} -linearity this implies that $\operatorname{Tr}_{K/\mathbb{Q}}(\gamma) = \frac{1}{3} \operatorname{Tr}_{K/\mathbb{Q}}(1) = 1$. Using the multiplication table we can now calculate the discriminant of A:

$$disc(A) = det \begin{pmatrix} \operatorname{Tr}(\alpha^2) & \operatorname{Tr}(\alpha\beta) & \operatorname{Tr}(\alpha\gamma) \\ \operatorname{Tr}(\beta\alpha) & \operatorname{Tr}(\beta^2) & \operatorname{Tr}(\beta\gamma) \\ \operatorname{Tr}(\gamma\alpha) & \operatorname{Tr}(\gamma\beta) & \operatorname{Tr}(\gamma^2) \end{pmatrix}$$
$$= det \begin{pmatrix} 0 & 231 & 77 \\ 231 & 0 & 154 \\ 77 & 154 & 103 \end{pmatrix} = -17787 = -3 \cdot 7^2 \cdot 11^2.$$

From the lecture course, we know that $\operatorname{disc}(A) = [\mathcal{O}_K : A]^2 \operatorname{disc}(\mathcal{O}_K)$. Furthermore, both 7 and 11 are ramified in \mathcal{O}_K by (a) and therefore divide $\operatorname{disc}(\mathcal{O}_K)$ by Theorem 6.8.4 (a). Thus $[\mathcal{O}_K : \mathfrak{a}]^2$ must divide $3 \cdot 7 \cdot 11$, which is only possible for $[\mathcal{O}_K : \mathfrak{a}] = 1$. Therefore $A = \mathcal{O}_K$ with the stated discriminant, as desired.

- (c) The multiplication table in (b) shows that $\alpha \equiv \gamma^2 \gamma 1 \mod 3\mathcal{O}_K$ and $\beta \equiv \gamma^2 \gamma + 1 \mod 3\mathcal{O}_K$. Thus $\mathcal{O}_K/3\mathcal{O}_K$ is generated as an \mathbb{F}_3 -algebra by the residue class of γ . Another direct calculation using the multiplication table shows that $\gamma^3 \gamma^2 \equiv 0 \mod 3\mathcal{O}_K$. Therefore $\mathcal{O}_K/3\mathcal{O}_K \cong \mathbb{F}_3[X]/(X^3 X^2) = \mathbb{F}_3[X]/(X^2(X-1))$, where the residue class of γ corresponds to the residue class of X. Thus the maximal ideals (X) and (X-1) of the right hand side correspond to the maximal ideals $\mathfrak{p}_3 := (3, \gamma)$ and $\mathfrak{p}'_3 := (3, \gamma 1)$ of \mathcal{O}_K , both with residue fields isomorphic to \mathbb{F}_3 . Since $\mathfrak{p}_3^2\mathfrak{p}_3'/3\mathcal{O}_K$ maps to the ideal $(X)^2(X-1) = (X^3 X^2) = (0) \subset \mathbb{F}_3[X]/(X^3 X^2)$ via the isomorphism given above, we have $\mathfrak{p}_3^2\mathfrak{p}_3' \subset 3\mathcal{O}_K$. As both sides have the same norm, we deduce the desired equality.
- (d) By Theorem 6.7.6 a prime \mathfrak{p} of \mathcal{O}_K divides the different diff_ \mathcal{O}_K/\mathbb{Z} if and only if \mathfrak{p} is ramified over \mathbb{Z} . By the multiplicativity of the norm Norm(\mathfrak{p}) then divides Norm(diff_ \mathcal{O}_K/\mathbb{Z}), which is equal to $|\operatorname{disc}(\mathcal{O}_K)| = 3 \cdot 7^2 \cdot 11^2$ by Proposition 6.8.2 and part (b). In view of parts (a) and (c) this leaves only the possibilities $\mathfrak{p} = \mathfrak{p}_3, \mathfrak{p}_7, \mathfrak{p}_{11}$. But the norm of any prime ideal is the order of its residue field, and the residue field is a prime field in each of these cases. Thus the prime factorization of $|\operatorname{disc}(\mathcal{O}_K)|$ implies that diff_ $\mathcal{O}_K/\mathbb{Z}} = \mathfrak{p}_3\mathfrak{p}_7^2\mathfrak{p}_{11}^2$.
- *(e) By (a) we have $(\alpha)^3 = (\alpha^3) = (7^2 \cdot 11) = \mathfrak{p}_7^6 \mathfrak{p}_{11}^3$. By unique prime factorization of ideals this implies that $(\alpha) = \mathfrak{p}_7^2 \mathfrak{p}_{11}$. Using (d) it follows that $\operatorname{diff}_{\mathcal{O}_K/\mathbb{Z}} = \mathfrak{p}_3 \mathfrak{p}_7^2 \mathfrak{p}_{11}^2 = \alpha \mathfrak{p}_3 \mathfrak{p}_{11}$, so $\operatorname{diff}_{\mathcal{O}_K/\mathbb{Z}}$ is principal if and only if $\mathfrak{p}_3 \mathfrak{p}_{11}$ is principal. Suppose that $\mathfrak{p}_3 \mathfrak{p}_{11} = (\xi)$ for some element $\xi \in \mathcal{O}_K$. Then $|\operatorname{Norm}_{K/\mathbb{Q}}(\xi)| = \operatorname{Norm}(\mathfrak{p}_3 \mathfrak{p}_{11}) = 3 \cdot 11$, and so $\operatorname{Norm}_{K/\mathbb{Q}}(\xi) = \pm 33$. We will show that this is impossible. Write $\xi = a\alpha + b\beta + c\gamma$ with $a, b, c \in \mathbb{Z}$. The Galois conjugates of

$\varphi \in \operatorname{Hom}_{\mathbb{Q}}(K, \overline{\mathbb{Q}})$	$\varphi(\alpha)$	$\varphi(\beta)$	$\varphi(\gamma)$
$\operatorname{id}: \alpha \mapsto \alpha$	α	β	γ
$\varphi_1: \alpha \mapsto \zeta_3 \alpha$	$\zeta_3 lpha$	$\zeta_3^2 eta$	$\frac{1{+}2\zeta_3\alpha{+}\zeta_3^2\beta}{3}$
$\varphi_2: \alpha \mapsto \zeta_3^2 \alpha$	$\zeta_3^2 \alpha$	$\zeta_3 eta$	$\frac{1{+}2\zeta_3^2\alpha{+}\zeta_3\beta}{3}$

 α , β , and γ are given in the following table, where ζ_3 is a primitive 3rd root of unity:

We calculate

$$\operatorname{Norm}_{K/\mathbb{Q}}(\xi) = \xi \cdot \varphi_1(\xi) \cdot \varphi_2(\xi)$$

= 7² \cdot 11a³ + 7 \cdot 11²b³ + 2 \cdot 7² \cdot 11a²c - 7 \cdot 11abc + 7 \cdot 11²b²c
+ 3² \cdot 7 \cdot 11ac² + 3 \cdot 7 \cdot 11bc² + 2 \cdot 3 \cdot 29c³.

This is congruent to $-c^3 \mod (7)$. Since the only cubes in \mathbb{F}_7 are 0 and ± 1 , it follows that $\operatorname{Norm}_{K/\mathbb{Q}}(\xi)$ is congruent to 0 or $\pm 1 \mod (7)$. As each of these residue classes is distinct from $\pm 33 \equiv \pm 5 \mod (7)$, we have obtained the desired contradiction. Therefore no element $\xi \in \mathcal{O}_K$ of norm ± 33 exists and $\operatorname{diff}_{\mathcal{O}_K/\mathbb{Z}}$ is not principal in \mathcal{O}_K .

Finally, if $\mathcal{O}_K = \mathbb{Z}[\omega]$ and f(X) is the minimal polynomial of ω over \mathbb{Q} , by Proposition 6.7.3 diff_{\mathcal{O}_K/\mathbb{Z}} = (\frac{df}{dX}(\omega)). Since diff_ \mathcal{O}_K/\mathbb{Z} is not a principal ideal, it follows that \mathcal{O}_K is not generated by a single element over \mathbb{Z} .