D-MATH Number Theory I HS 2023
Prof. Richard Pink .
Solutions 10

DIFFERENT AND DISCRIMINANT

1. Let L/K be a Galois extension of number fields with Galois group I', and let b be
a fractional ideal of Q. Show that

Nmg/k(b) = Kn ][]

yel’

Solution: For any fractional ideal b of Op, we set N(b) := K N[ 7b, which by
construction is an A-submodule of K. Since Nmy,/k(b) is the fractional ideal of
Ok that is generated by the elements Nmy x(b) = [, b for all b € b, and all
these lie in N(b), we have Nmp,/x(b) C N(b). In particular N(b) is non-zero.

Also, by construction we have 1 = Nmy k(1) € Nmy/x(Or) C Ok and therefore
Nmp,x(Or) = Og. The multiplicativity of the relative norm thus implies that

OK = NmL/K(OL) = NmL/K(b) . NmL/K(b_l) - N(b) . N(b_l)
On the other hand we compute that

N(b)-N(b7) = (KﬂH”b) : (KﬂH”h‘l) c Kn[["6"6 " = KNO, = Ok

vyel yerl yerl’

In particular this shows that N(b) C Ok for any a € N(b~*) \ {0}; hence N(b)
is a fractional ideal of Ok. Also, together we conclude that the inclusion

Nmy, g (b) - Nmp/(b™") C N(b)- N(b™")

must be an equality. Thus the inclusion of fractional ideals Nmp, x(b) C N(b) is
an equality, as desired.

2. Let A be a Dedekind ring with quotient field K. Take finite separable extensions
M/L/K and let C'/B/A be the respective integral closures of A.

(a) Prove that Nmy x(Nmps/r(c)) = Nmps/k(c) for any fractional ideal ¢ of C.
(b) Prove that dlffc/A = dlﬁc/B . dlffB/A

Solution:



()

For any fractional ideal ¢ of C' and any = € M* we have

Nmyp, g (Nmps/p(xc)) = NmL/K(NmM/L(x) . NmM/L(c))
= Nmp,/x(Nmayr(x)) - Nmp, g (Nmpg/(c))
= Nmyyr(z) Nmp g (Nmyz(c))
and
Nm s/ (xc)) = Nmpyx(x) - Nmagyg(c).

Since any fractional ideal of C' can be written in the form z¢ for an x € M*
and a non-zero ideal ¢ C () it suffices to prove the desired formula in the
case ¢ C C.

In that case choose z € ¢\ {0} and set  := Nmy/k(2). Since ¢ C C' we then
have z € ¢\ {0} and can therefore write ¢ = (z,w) for some w € M. By the
lemma from §6.6 we then have

Nk (¢) = (2, Nmpyg(w)).
On the other hand we have y := Nmy;(2) € Nmyyr(c) and therefore
Nmys/z(c) = (y, Nmy(w)) by the same lemma. Since x = Nmyy /g (2) =
Nmy,/k(y) € Nmp g (Nmasyr(c)), using the same lemma again implies that
NmL/K(NmM/L(c)) = (ZE,NH]K/L(NH]M/L(U)))) = (x,NmM/K(w))
The desired equality follows.
For any element z € M we have z € diffg,} 4 if and only if

Vee C: Tryyi(cz) € A

Vee C: Vbe B: Tryk(bez) € A

Vee C: Vbe B: Tryk(Trayyn(bez)) € A
Vee C: Vbe B: Tryg(bTryyp(cz)) € A
Vee C: Tryyp(cz) € diff;}A.

11l

Since Tryy/p, is L-linear, multiplying by diﬂ%} , shows that the last condition
is equivalent to

\V/y eC- diffB/AZ TI‘M/L(yZ) € B.
That in turn is equivalent to

Vyediffga: Vee C: Tryyp(cyz) € B
= Vyediffpa: yz € diff ),
> diffgja-2 € diff
= zediffy), diff;) ;.

Therefore diﬁ“a} 4= diff;} A diffa} g from which the claim follows.
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3. For K := Q(v/2) compute the prime factorization of the different diffo, /7 and
verify that a prime ideal of O divides diffp, /7 if and only if it is ramified over Z.

Solution: By Exercise 3 of Sheet 8 we have Ox = Z[w] with w := /2. The
minimal polynomial of w over Q is f(X) := X3 — 2; hence by Proposition 6.7.3
we have
diﬁOK/Z = (%(w)) = (3&)2).

In the solution of Exercise 4 on Sheet 8, we calculated that O /20 = Fo[ X]/(X)?
and Ok /30 = F3[X]/(X — 2)3. Therefore 20k = p3 and 30k = pj for the
prime ideals ps := (2,w) = (w) and p3 := (3,w — 2). The prime factorization of
the different is therefore diffo, ;7 = p3p3.

In particular, the primes p, and p3 are totally ramified over Z and divide the
different. Any other prime p of Ok lies over a rational prime p # 2,3. The
polynomial f(X) = X3 —2 is then separable modulo p. Thus its decomposition in
[F,[X] has no multiple factors, and so all exponents in the prime factorization of
pOg are 1. Thus p is unramified over Z and does not divide the different. Together
this shows that a prime of O is ramified over Z if and only if it divides diffp, /7.

4. Let K := Q(«) for a := v/539.

(a) Using Exercise 5 of Sheet 8, show that (7) and (11) are totally ramified in Of.
Let p7 and py; denote the prime ideals above (7) and (11), respectively.

(b) Using the discriminant, show that Ox = aZ @& SZ & vyZ, where [ := % and
v = 248 and that dise(Ox) = —3 - 72 - 112,

(c) Show that 30 = p2p} for distinct prime ideals p3 and pj.

(d) Show that the different of Ok /Z is psp2p?,.

*(e) Using the norm, show that diffo, /7 is not principal and conclude that Ok is
not generated by one element over Z.

Solution:

(a) The minimal polynomial of a is X3 — 7% - 11, which is Eisenstein at 11 and
therefore irreducible. Thus [K/Q] = 3. On the other hand K is also generated
by 8 := I which has minimal polynomial X®—7-11? that is Eisenstein at 7.
By Exercise 5 of Sheet 8, the primes (7) and (11) are therefore totally ramified
in Ok with decompositions 7Ok = p3 for p; := (7,) and 110k = p3, for
P11 = (11, ).

(b) Since = a—;, the elements «, 8, form a basis of K over Q. We compute
the multiplication table for pairs of basis elements:

L o | E | 7 |
a 73 77 = —16da — 778 + 2317 | —bla — 213 + 77y
3 77 1la —99a — 5153 + 1547
v =5la — 218+ 77v| —99a — 518 + 164y | —67a — 318 + 103y
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This table shows that A := oZ & SZ & Y7 is a subring. Since A is finitely
generated as a Z-module, it is integral over Z and hence contained in Ok.
Next, we see from the minimal polynomials of a and 3 that Trgg(a) =
Trg/(8) = 0. By Q-linearity this implies that Trg/g(y) = %TrK/Q(l) = 1.
Using the multiplication table we can now calculate the discriminant of A:

Tr(a?) Tr(a

disc(A) = det | Tr(Ba) Tr( 2)) Tr(B7)
Tr(ya) Tr(v8) Tr(7?)
0 231 77
=det [231 0 154 | =—17787= -3 7% -11%
77 154 103

From the lecture course, we know that disc(A) = [Of : A]*disc(Ok). Fur-
thermore, both 7 and 11 are ramified in Ok by (a) and therefore divide
disc(Og) by Theorem 6.8.4 (a). Thus [Of : a)*> must divide 3 -7 - 11, which
is only possible for [Of : a] = 1. Therefore A = Ok with the stated discrim-
inant, as desired.

The multiplication table in (b) shows that a = 4> — v — 1 mod 30k and
B =~*~v+1 mod 30k. Thus Ok /30 is generated as an Fs-algebra by the
residue class of 7. Another direct calculation using the multiplication table
shows that v*—+? = 0 mod 30f. Therefore Ok /30 = F3[X]/(X*—X?) =
F3[X]/(X?(X — 1)), where the residue class of vy corresponds to the residue
class of X. Thus the maximal ideals (X) and (X — 1) of the right hand side
correspond to the maximal ideals p3 := (3,7) and p; := (3,7 — 1) of Ok,
both with residue fields isomorphic to Fs. Since p3ps/30Ox maps to the ideal
(X)3(X —1) = (X? — X?) = (0) C F3[X]/(X?® — X?) via the isomorphism
given above, we have p2p; C 3O0f. As both sides have the same norm, we
deduce the desired equality.

By Theorem 6.7.6 a prime p of O divides the different diffp, /7 if and only if
p is ramified over Z. By the multiplicativity of the norm Norm(p) then divides
Norm(diff,. /z), which is equal to | disc(Og)| = 3-72-11% by Proposition 6.8.2
and part (b). In view of parts (a) and (c) this leaves only the possibilities
p = ps3, P7, p11. But the norm of any prime ideal is the order of its residue
field, and the residue field is a prime field in each of these cases. Thus the
prime factorization of | disc(Ok)| implies that diffo, ;7 = psp3pd;.

By (a) we have (a)? = (a3) = (72-11) = pSp?,. By unique prime factorization
of ideals this implies that (o) = p2py;. Using (d) it follows that diffo, /7 =
pspapd; = apspii, so diffp, 7z is principal if and only if pspy; is principal.
Suppose that psp1; = (£) for some element § € Ok. Then | Normg,g(§)| =
Norm(pspi1) = 3 - 11, and so Normg g(§) = £33. We will show that this is
impossible. Write £ = aa+ b0 + ¢y with a, b, ¢ € Z. The Galois conjugates of

4



a, [, and ~ are given in the following table, where (3 is a primitive 3rd root
of unity:

p € Homg(K,Q) [ ¢(@) [0(8) | o(v) |

id:a— « o 6] y
1+2¢3a+(2
pria—Ga || Ga | GB | el
1+22a+
ppiam Ga || Ga | @B | Rl

We calculate

Normg /(&) = & - 01(§) - p2(§)
=7 11a®>+7 1120 +2- 7% - 11d%c — 7 - 11labe + 7 - 11%b%¢c
+32.7-11lac® +3-7-11bc* +2- 3 - 29¢°.

This is congruent to —c¢® mod (7). Since the only cubes in F; are 0 and +1,
it follows that Normg (&) is congruent to 0 or +1 modulo (7). As each of
these residue classes is distinct from £33 = +5 mod (7), we have obtained
the desired contradiction. Therefore no element £ € Ok of norm 433 exists
and diffp, /7 is not principal in Of.

Finally, if Ok = Z|w] and f(X) is the minimal polynomial of w over Q, by
Proposition 6.7.3 diffp, /7 = (%(u})). Since diffp, /7 is not a principal ideal,
it follows that Ok is not generated by a single element over Z.



