Zeta Functions

1. Consider real numbers $1<a_{1}<a_{2}<\ldots$ with $\sum_{k=1}^{\infty} a_{k}^{-1}=\infty$. For any integer n let b_{n} denote the number of $k \geqslant 1$ with $a_{k} \leqslant n$. Prove that for every $\varepsilon>0$:
(a) There exist infinitely many k with $a_{k} \leqslant \varepsilon k(\log k)^{1+\varepsilon}$.
(b) There exist infinitely many n with $b_{n} \geqslant \frac{n}{\varepsilon(\log n)^{1+\varepsilon}}$.
*(c) Suppose that $a_{k}=k(\log k)^{c}$ for some constant $c \geqslant 0$. Determine the asymptotic behavior of $\sum a_{k}^{-s}$ for real $s \rightarrow 1+$.
2. Show that for any $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ we have
(a)

$$
\zeta(s)^{-1}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

where μ denotes the Möbius function.
(b)

$$
\zeta(s)^{2}=\sum_{n=1}^{\infty} \frac{d(n)}{n^{s}},
$$

where $d(n)$ is the number of divisors of n.
(c)

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=-\sum_{p \text { prime }} \sum_{n=1}^{\infty} \frac{\log p}{p^{n s}} .
$$

*(d)

$$
\log \zeta(s)=s \cdot \int_{2}^{\infty} \frac{\pi(x)}{x\left(x^{s}-1\right)} d x
$$

where $\pi(x)$ denotes the number of primes $p \leqslant x$.
3. Let \mathbb{F}_{q} denote a finite field of cardinality q, and consider a ring of the form $A:=$ $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{s}\right)$ for polynomials f_{1}, \ldots, f_{s}. For every ideal $\mathfrak{a} \subset A$ of finite index $\operatorname{set} \operatorname{deg}(\mathfrak{a}):=\operatorname{dim}_{\mathbb{F}_{q}}(A / \mathfrak{a})$. The formal zeta function of A is the formal power series

$$
Z(T):=\prod_{\mathfrak{m} \subset A}\left(1-T^{\operatorname{deg}(\mathfrak{m})}\right)^{-1} \in \mathbb{Z}[[T]]^{\times},
$$

where the product is extended over all maximal ideals $\mathfrak{m} \subset A$. For any integer $n \geqslant 1$ let $\mathbb{F}_{q^{n}}$ be an extension of degree n and put

$$
X\left(\mathbb{F}_{q^{n}}\right):=\left\{\underline{x} \in\left(\mathbb{F}_{q^{n}}\right)^{r} \mid f_{1}(\underline{x})=\ldots=f_{s}(\underline{x})=0\right\} .
$$

(Explanation: Here X denotes the affine algebraic variety over \mathbb{F}_{q} defined by the equations $f_{1}=\ldots=f_{s}=0$, and A is its coordinate ring.)
(a) Prove that $Z(T)$ is well-defined and satisfies

$$
T \frac{d}{d T} \log Z(T)=T \frac{Z^{\prime}(T)}{Z(T)}=\sum_{n \geqslant 1}\left|X\left(\mathbb{F}_{q^{n}}\right)\right| \cdot T^{n}
$$

(b) If A is a Dedekind ring prove that

$$
Z(T)=\sum_{0 \neq \mathfrak{a} \subset A} T^{\operatorname{deg}(\mathfrak{a})} .
$$

(c) In the case $A:=\mathbb{F}_{q}\left[X_{1}, \ldots, X_{r}\right]$ prove that

$$
Z(T)=\left(1-q^{r} T\right)^{-1}
$$

(d) Prove that the number N_{d} of monic irreducible polynomials of degree d in $\mathbb{F}_{q}[X]$ satisfies

$$
N_{d}=\frac{1}{d} \cdot \sum_{k \mid d} \mu\left(\frac{d}{k}\right) q^{k},
$$

where μ is the Möbius function.

