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Prof. Richard Pink

Solutions 11

Zeta Functions

1. Consider real numbers 1 < a1 < a2 < . . . with
∑∞

k=1 a
−1
k = ∞. For any integer n

let bn denote the number of k ⩾ 1 with ak ⩽ n. Prove that for every ε > 0:

(a) There exist infinitely many k with ak ⩽ εk(log k)1+ε.

(b) There exist infinitely many n with bn ⩾ n
ε(logn)1+ε .

*(c) Suppose that ak = k(log k)c for some constant c ⩾ 0. Determine the asymp-
totic behavior of

∑
a−s
k for real s → 1+.

Solution: (a) If not, there exists ε > 0 such that ak ⩾ εk(log k)1+ε for all k ⩾ 2.
Then

∑∞
k=1 a

−1
k ⩽ a−1

1 + 1
ε

∑∞
k=2

1
k(log k)1+ε . The latter series converges because∫ ∞

2

1

x(log(x))1+ε
dx

y=log(x)
=

∫ ∞

log 2

1

y1+ε
dy = − 1

εyε

∣∣∣∣∞
log 2

< ∞.

Hence
∑∞

k=1 a
−1
k < ∞, contradicting our assumption.

(b) If not, there exists ε > 0 such that bn ⩽ n
ε(logn)1+ε for all n. In particular for

all k we have k = bak ⩽ ak
ε(log ak)1+ε and hence εk(log ak)

1+ε ⩽ ak. This implies that

εk(log a1)
1+ε ⩽ ak and hence εk(c+ log k)1+ε ⩽ ak for c := log(ε(log a1)

1+ε). Thus
we have ε

2
k(log k)1+ε ⩽ ak for all k ≫ 0, contradicting (a).

(c) The answer is: ∑
a−s
k ∼


1 if c > 1,

log 1
s−1

if c = 1,

(s− 1)c−1 if 0 ⩽ c < 1,

where ∼ means that the ratio of the two sides is bounded away from 0 and from∞.

Sketch of proof: As the function x 7→ (x(log x)c)−s is monotone decreasing, we
have ∑

k

(k(log k)c)−s = O(1) +

∫ ∞

2

(x(log x)c)−sdx.

The substitution x = ey turns this into

O(1) +

∫ ∞

1

(eyyc)−seydy = O(1) +

∫ ∞

1

y−cse−y(s−1)dy,
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If c > 1, this converges for s → 1+ to

O(1) +

∫ ∞

1

y−cdy = O(1) + 1
c−1

= O(1),

yielding the stated answer. If c ⩽ 1 we use the substitution y(s− 1) = z to obtain

O(1) +

∫ ∞

s−1

(
z

s−1

)−cs
e−z dz

s−1
= O(1) + (s− 1)cs−1

∫ ∞

s−1

z−cse−zdz.

Here (s − 1)cs−1 ∼ (s − 1)c−1, because (s − 1)s−1 → 1 for s → 1+. To estimate
the last integral we break it up at z = 1. The integral over [1,∞) is bounded by∫∞
1

e−zdz = e−1. By contrast, for all z ∈ [0, 1] we have e−1 ⩽ e−z ⩽ 1; hence the
integral over [s− 1, 1] is∫ 1

s−1

z−cse−zdz ∼
∫ 1

s−1

z−csdz =
z1−cs

1− cs

∣∣∣∣1
s−1

=
1− (s− 1)1−cs

1− cs

provided that cs ̸= 1. In the case c < 1 we have cs < 1 for all s near 1, so the
right hand side is ∼ 1, yielding the stated answer. In the case c = 1 the result is

∼ O(1) +
1− (s− 1)1−s

1− s
= O(1) +

e−(s−1) log(s−1) − 1

s− 1

= O(1) +
−(s− 1) log(s− 1) +O(((s− 1) log(s− 1))2)

s− 1

= O(1) + log
1

s− 1
+ o(s− 1)

∼ log
1

s− 1
,

which is again the stated answer.

2. Show that for any s ∈ C with Re(s) > 1 we have

(a)

ζ(s)−1 =
∞∑
n=1

µ(n)

ns
,

where µ denotes the Möbius function.

(b)

ζ(s)2 =
∞∑
n=1

d(n)

ns
,

where d(n) is the number of divisors of n.

2



(c)

ζ ′(s)

ζ(s)
= −

∑
p prime

∞∑
n=1

log p

pns
.

*(d)

log ζ(s) = s ·
∫ ∞

2

π(x)

x(xs − 1)
dx,

where π(x) denotes the number of primes p ⩽ x.

Solution:

(a) The Euler product formula (Proposition 7.1.7) states that

ζ(s) =
∏

p prime(1− p−s)−1.

By taking the inverse on both sides, we obtain

ζ(s)−1 =
∏

p prime(1− p−s).

For N > 0, let 2 = p1 < · · · < pM denote the prime numbers ⩽ N . We have

M∏
i=1

(1− p−s
i ) =

∑
k1,...,kM∈{0,1}

(−1)
∑M

i=1 ki

M∏
i=1

p−ski
i =

∑
n∈Z⩾1

prime factors of n are ⩽N

µ(n)n−s.

The right hand side converges absolutely for N → ∞ as its terms are bounded
in absolute value by a reordering of the terms of ζ(s) which converges ab-
solutely. In the limit we thus obtain the desired formula by reordering the
terms of the right hand side.

(b) See e.g. https://proofwiki.org/wiki/Square_of_Riemann_Zeta_Function
using the fact that the product of two absolutely convergent series is abso-
lutely convergent.

(c),(d) See pages 67-69 in [K. Chandrasekharan: Lectures on the Riemann Zeta Func-
tion. Lectures on mathematics and physics. Tata Institute of Fundamental
Research, Bombay, 1953].

3. Let Fq denote a finite field of cardinality q, and consider a ring of the form A :=
Fq[X1, . . . , Xr]/(f1, . . . , fs) for polynomials f1, . . . , fs. For every ideal a ⊂ A of
finite index set deg(a) := dimFq(A/a). The formal zeta function of A is the formal
power series

Z(T ) :=
∏
m⊂A

(1− T deg(m))−1 ∈ Z[[T ]]×,
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where the product is extended over all maximal ideals m ⊂ A. For any integer
n ⩾ 1 let Fqn be an extension of degree n and put

X(Fqn) :=
{
x ∈ (Fqn)

r
∣∣ f1(x) = . . . = fs(x) = 0

}
.

(Explanation: Here X denotes the affine algebraic variety over Fq defined by the
equations f1 = . . . = fs = 0, and A is its coordinate ring.)

(a) Prove that Z(T ) is well-defined and satisfies

T
d

dT
logZ(T ) = T

Z ′(T )

Z(T )
=

∑
n⩾1

|X(Fqn)| · T n.

(b) If A is a Dedekind ring prove that

Z(T ) =
∑

0 ̸=a⊂A

T deg(a).

(c) In the case A := Fq[X1, . . . , Xr] prove that

Z(T ) = (1− qrT )−1.

(d) Prove that the number Nd of monic irreducible polynomials of degree d in
Fq[X] satisfies

Nd = 1
d
·
∑
k|d

µ( d
k
)qk,

where µ is the Möbius function.

Solution: (a) Any point x ∈ X(Fqn) determines an Fq-algebra homomorphism

φx : A −→ Fqn , f(X) 7→ f(x),

and conversely any Fq-algebra homomorphism A → Fqn arises in this way from a
unique point in X(Fqn). Moreover, the kernel mx of φx is a maximal ideal of A
and φx corresponds to an embedding A/mx ↪→ Fqn . Thus the residue field A/mx

is an extension of Fq of degree dividing n.

Conversely, for any maximal ideal m ⊂ A the residue field A/m is a field extension
of Fq that is finitely generated as an Fq-algebra. It is therefore a finite exten-
sion of Fq of degree deg(m) < ∞. By Galois theory, there exists an embedding
A/m ↪→ Fqn if and only if deg(m)|n, and the number of embeddings is then deg(m).
Together this shows that

(∗) |X(Fqn)| =
∑
m⊂A

deg(m)|n

deg(m).
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Note that X(Fqn) is a finite set, because there are only finitely many possibilities
for the coefficients of x. Thus (∗) implies that for every integer d ⩾ 1 there exist
at most finitely many maximal ideals m with deg(m) = d. This shows that the
product defining Z(T ) converges in Z[[T ]]×; hence Z(T ) is well-defined.

Now we can calculate

T
d

dT
logZ(T ) = −T

d

dT

∑
m⊂A

log(1− T deg(m))

= −T
∑
m⊂A

− deg(m)T deg(m)−1

1− T deg(m)

=
∑
m⊂A

deg(m)
∞∑
k=1

T k deg(m)

=
∞∑
n=1

∑
m⊂A

deg(m)|n

deg(m)T n

=
∞∑
n=1

|X(Fqn)| · T n.

(b) This follows from unique factorization of ideals in the same way as one proves
the Euler product of the Riemann or Dedekind zeta function.

(c) In the case A = Fq[X1, . . . , Xr] there are no equations to satisfy; hence we have
|X(Fqn)| = qrn. By (a) we therefore get

T
d

dT
logZ(T ) =

∑
n⩾1

qrnT n =
qrT

1− qrT
= T

d

dT
log

1

1− qrT
.

Integrating formally this shows that Z(T ) and (1−qrT )−1 differ only by a constant
factor. Since both have constant coefficient 1, this factor must be 1. (Aliter: In
the case r = 1 one can use (b) instead of (a).)

(d) Setting A := Fq[X], the number Nd is the number of maximal ideals m ⊂ A
of degree deg(m) = d. Thus by the formula (∗) we have

qn =
∑
d|n

dNd.

By Möbius inversion, as in exercise 1 (b) of sheet 5, this is equivalent to

dNd =
∑
k|d

µ( d
k
)qk.
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