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Prof. Richard Pink .
Solutions 11

ZETA FUNCTIONS

1. Consider real numbers 1 < a1 < ag < ... with Y, a,;l = oo. For any integer n
let b,, denote the number of £ > 1 with a;, < n. Prove that for every ¢ > 0:

(a) There exist infinitely many & with a;, < ek(log k) *e.
(b) There exist infinitely many n with b, > DL

*(c) Suppose that a; = k(log k)¢ for some constant ¢ > 0. Determine the asymp-
totic behavior of ) a,® for real s — 1+.

Solution: (a) If not, there exists € > 0 such that ay > ek(log k)t for all k > 2.
Then > 7 a;' <ay'+ 1307, k(lle)H'E' The latter series converges because

> 1 y=log(x) /oo 1 1|
—————dx " = dy = — < Q.
/2 z(log(z))H+ log2 Y7 €Y |iogo

Hence >°72 a; ' < oo, contradicting our assumption.

(b) If not, there exists € > 0 such that b, < ozt for all n. In particular for
all £ we have k = b,, < W and hence ek(log ;)™ < aj. This implies that
ek(logay)'** < ai, and hence ek(c+log k)™ < ay, for ¢ := log(e(log a;)'™). Thus
we have Sk(log k)'¢ < ay for all k> 0, contradicting (a).

(¢) The answer is:
1 ifc>1,

Za,;s ~ logﬁ ifc=1,
(s—1t if0<e<,

where ~ means that the ratio of the two sides is bounded away from 0 and from ooc.

Sketch of proof: As the function x +— (x(logz)¢)~* is monotone decreasing, we
have

> (k(logk))™ = O(1) + /2 Oo(x(logm)c)_sdx.

k
The substitution z = €Y turns this into

O(l)-l-/ (eyyC)—seydy — 0(1)+/ y‘cse_y(s_l)dy,
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If ¢ > 1, this converges for s — 1+ to
o)+ [ yy = o)+ 2 = 0(),
1

yielding the stated answer. If ¢ < 1 we use the substitution y(s — 1) = z to obtain

oM+ [ () e s = oW+ (-1t [ s

s s—1
Here (s — 1)%7! ~ (s — 1)°7!, because (s — 1)*! — 1 for s — 1+. To estimate
the last integral we break it up at z = 1. The integral over [1,00) is bounded by
floo e ?dz = e~!. By contrast, for all z € [0,1] we have e7! < e7* < 1; hence the
integral over [s — 1,1] is

1 1 Zl—cs
/ 2 e Fdz ~ / 2 %dz =
s—1 s—1 I—ecs

provided that c¢s # 1. In the case ¢ < 1 we have ¢s < 1 for all s near 1, so the
right hand side is ~ 1, yielding the stated answer. In the case ¢ = 1 the result is

! 1—(s— 1)t

1—ocs

1 — (S _ 1)1—8 _ 6—(5—1)10g(s—1) -1
~O(1)+—1_S = O(1)+ p—
_ o)+ —(s=1)log(s — 1)+ O(((s — 1) log(s — 1))?)
s—1
1
= O(l)—i—logs_1 +o(s—1)
1
~ ]
0og s_1’

which is again the stated answer.

2. Show that for any s € C with Re(s) > 1 we have

(a)

ot = o,

where 1 denotes the Mobius function.

(b)

by
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n=1

where d(n) is the number of divisors of n.



¢(s) _ 3 — logp

- pns '

p prime n=1

log((s) = s '/200 x(;(x_) 1) dz,

where 7(x) denotes the number of primes p < z.
Solution:
(a) The Euler product formula (Proposition 7.1.7) states that
C(S) = Hp prime(l - pis)il'
By taking the inverse on both sides, we obtain
C(S)il = Hp prime(l - pis)'

For N >0, let 2 =p; < --- < py denote the prime numbers < N. We have

M M

s M L. —sk; -5
[[a=p)= > (—p==s]]p" = > p(n)n=>.
i=1 ki,....kar€{0,1} i=1 nez>1

prime factors of n are <N

The right hand side converges absolutely for N — oo as its terms are bounded
in absolute value by a reordering of the terms of ((s) which converges ab-
solutely. In the limit we thus obtain the desired formula by reordering the
terms of the right hand side.

(b) Seee.g. https://proofwiki.org/wiki/Square_of _Riemann_Zeta_Function
using the fact that the product of two absolutely convergent series is abso-
lutely convergent.

(c),(d) Seepages 67-69 in [K. Chandrasekharan: Lectures on the Riemann Zeta Func-
tion. Lectures on mathematics and physics. Tata Institute of Fundamental
Research, Bombay, 1953].

3. Let F, denote a finite field of cardinality ¢, and consider a ring of the form A :=
F,[Xi1,..., X]/(f1,..., fs) for polynomials fi,..., fs. For every ideal a C A of
finite index set deg(a) := dimg,(A/a). The formal zeta function of A is the formal
power series

2(T) = [[(a—-1*™)=" e zZ[T]*,

mCA



where the product is extended over all maximal ideals m C A. For any integer
n > 1 let F,» be an extension of degree n and put

X(Fq) = {z€Fp) | filz)=...= fi(z) =0}.
(Ezplanation: Here X denotes the affine algebraic variety over F, defined by the
equations f; = ... = f; =0, and A is its coordinate ring.)

(a) Prove that Z(T) is well-defined and satisfies

T%logZ(T) _ 20 _ > IX(Fy)|- T

(b) If A is a Dedekind ring prove that

Z(T) = > T,

0#aCA
(c) In the case A :=F,[Xy,...,X,] prove that
Z(T) = (1-q'T)""

(d) Prove that the number Ny of monic irreducible polynomials of degree d in

[F,[X] satisfies
Na = 3 ),
kld

where p is the Mobius function.

Solution: (a) Any point z € X (F,n) determines an F -algebra homomorphism
P - A — ]Fq”a f(&) = f(£)7

and conversely any F,-algebra homomorphism A — F,» arises in this way from a
unique point in X (F,»). Moreover, the kernel m, of ¢, is a maximal ideal of A
and ¢, corresponds to an embedding A/m, < F;». Thus the residue field A/m,
is an extension of I, of degree dividing n.

Conversely, for any maximal ideal m C A the residue field A/m is a field extension
of IF, that is finitely generated as an [ -algebra. It is therefore a finite exten-
sion of IF, of degree deg(m) < oo. By Galois theory, there exists an embedding
A/m — F . if and only if deg(m)|n, and the number of embeddings is then deg(m).
Together this shows that

(%) [X(Fp)] = Y deg(m).



Note that X (F;») is a finite set, because there are only finitely many possibilities
for the coefficients of z. Thus (%) implies that for every integer d > 1 there exist
at most finitely many maximal ideals m with deg(m) = d. This shows that the
product defining Z(T') converges in Z[[T]]*; hence Z(T') is well-defined.

Now we can calculate

d — d deg(m)
T-slog Z(T) =T D log(1 — TEM)

= Z Z deg(m)T™

n=1 mCA
deg(m)|n

= > IX(Fp)| - T
n=1

(b) This follows from unique factorization of ideals in the same way as one proves
the Euler product of the Riemann or Dedekind zeta function.

(c) In the case A = F,[X1, ..., X,] there are no equations to satisfy; hence we have
| X (F4n)| = ¢"™. By (a) we therefore get
d qT d 1
T—logZ(T) = = = T—1 .
ar 8 Z(7) ;q 1—¢T ar 1T

Integrating formally this shows that Z(T') and (1—¢"T)~! differ only by a constant
factor. Since both have constant coefficient 1, this factor must be 1. (Aliter: In
the case 7 = 1 one can use (b) instead of (a).)

(d) Setting A := F,[X], the number N, is the number of maximal ideals m C A
of degree deg(m) = d. Thus by the formula (*) we have

¢" =Y dN,

dln

By Mébius inversion, as in exercise 1 (b) of sheet 5, this is equivalent to

dNg = Z n(d".
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