D-MATH
Prof. Richard Pink

Number Theory I
HS 2023

Solutions 11

Zeta Functions

1. Consider real numbers $1<a_{1}<a_{2}<\ldots$ with $\sum_{k=1}^{\infty} a_{k}^{-1}=\infty$. For any integer n let b_{n} denote the number of $k \geqslant 1$ with $a_{k} \leqslant n$. Prove that for every $\varepsilon>0$:
(a) There exist infinitely many k with $a_{k} \leqslant \varepsilon k(\log k)^{1+\varepsilon}$.
(b) There exist infinitely many n with $b_{n} \geqslant \frac{n}{\varepsilon(\log n)^{1+\varepsilon}}$.
*(c) Suppose that $a_{k}=k(\log k)^{c}$ for some constant $c \geqslant 0$. Determine the asymptotic behavior of $\sum a_{k}^{-s}$ for real $s \rightarrow 1+$.

Solution: (a) If not, there exists $\varepsilon>0$ such that $a_{k} \geqslant \varepsilon k(\log k)^{1+\varepsilon}$ for all $k \geqslant 2$. Then $\sum_{k=1}^{\infty} a_{k}^{-1} \leqslant a_{1}^{-1}+\frac{1}{\varepsilon} \sum_{k=2}^{\infty} \frac{1}{k(\log k)^{1+\varepsilon}}$. The latter series converges because

$$
\int_{2}^{\infty} \frac{1}{x(\log (x))^{1+\varepsilon}} d x \stackrel{y=\log (x)}{=} \int_{\log 2}^{\infty} \frac{1}{y^{1+\varepsilon}} d y=-\left.\frac{1}{\varepsilon y^{\varepsilon}}\right|_{\log 2} ^{\infty}<\infty .
$$

Hence $\sum_{k=1}^{\infty} a_{k}^{-1}<\infty$, contradicting our assumption.
(b) If not, there exists $\varepsilon>0$ such that $b_{n} \leqslant \frac{n}{\varepsilon(\log n)^{1+\varepsilon}}$ for all n. In particular for all k we have $k=b_{a_{k}} \leqslant \frac{a_{k}}{\varepsilon\left(\log a_{k}\right)^{1+\varepsilon}}$ and hence $\varepsilon k\left(\log a_{k}\right)^{1+\varepsilon} \leqslant a_{k}$. This implies that $\varepsilon k\left(\log a_{1}\right)^{1+\varepsilon} \leqslant a_{k}$ and hence $\varepsilon k(c+\log k)^{1+\varepsilon} \leqslant a_{k}$ for $c:=\log \left(\varepsilon\left(\log a_{1}\right)^{1+\varepsilon}\right)$. Thus we have $\frac{\varepsilon}{2} k(\log k)^{1+\varepsilon} \leqslant a_{k}$ for all $k \gg 0$, contradicting (a).
(c) The answer is:

$$
\sum a_{k}^{-s} \sim\left\{\begin{array}{cl}
1 & \text { if } c>1 \\
\log \frac{1}{s-1} & \text { if } c=1 \\
(s-1)^{c-1} & \text { if } 0 \leqslant c<1
\end{array}\right.
$$

where \sim means that the ratio of the two sides is bounded away from 0 and from ∞.
Sketch of proof: As the function $x \mapsto\left(x(\log x)^{c}\right)^{-s}$ is monotone decreasing, we have

$$
\sum_{k}\left(k(\log k)^{c}\right)^{-s}=O(1)+\int_{2}^{\infty}\left(x(\log x)^{c}\right)^{-s} d x
$$

The substitution $x=e^{y}$ turns this into

$$
O(1)+\int_{1}^{\infty}\left(e^{y} y^{c}\right)^{-s} e^{y} d y=O(1)+\int_{1}^{\infty} y^{-c s} e^{-y(s-1)} d y
$$

If $c>1$, this converges for $s \rightarrow 1+$ to

$$
O(1)+\int_{1}^{\infty} y^{-c} d y=O(1)+\frac{1}{c-1}=O(1)
$$

yielding the stated answer. If $c \leqslant 1$ we use the substitution $y(s-1)=z$ to obtain

$$
O(1)+\int_{s-1}^{\infty}\left(\frac{z}{s-1}\right)^{-c s} e^{-z} \frac{d z}{s-1}=O(1)+(s-1)^{c s-1} \int_{s-1}^{\infty} z^{-c s} e^{-z} d z
$$

Here $(s-1)^{c s-1} \sim(s-1)^{c-1}$, because $(s-1)^{s-1} \rightarrow 1$ for $s \rightarrow 1+$. To estimate the last integral we break it up at $z=1$. The integral over $[1, \infty)$ is bounded by $\int_{1}^{\infty} e^{-z} d z=e^{-1}$. By contrast, for all $z \in[0,1]$ we have $e^{-1} \leqslant e^{-z} \leqslant 1$; hence the integral over [$s-1,1$] is

$$
\int_{s-1}^{1} z^{-c s} e^{-z} d z \sim \int_{s-1}^{1} z^{-c s} d z=\left.\frac{z^{1-c s}}{1-c s}\right|_{s-1} ^{1}=\frac{1-(s-1)^{1-c s}}{1-c s}
$$

provided that $c s \neq 1$. In the case $c<1$ we have $c s<1$ for all s near 1 , so the right hand side is ~ 1, yielding the stated answer. In the case $c=1$ the result is

$$
\begin{aligned}
\sim O(1)+\frac{1-(s-1)^{1-s}}{1-s} & =O(1)+\frac{e^{-(s-1) \log (s-1)}-1}{s-1} \\
& =O(1)+\frac{-(s-1) \log (s-1)+O\left(((s-1) \log (s-1))^{2}\right)}{s-1} \\
& =O(1)+\log \frac{1}{s-1}+o(s-1) \\
& \sim \log \frac{1}{s-1},
\end{aligned}
$$

which is again the stated answer.
2. Show that for any $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ we have
(a)

$$
\zeta(s)^{-1}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

where μ denotes the Möbius function.
(b)

$$
\zeta(s)^{2}=\sum_{n=1}^{\infty} \frac{d(n)}{n^{s}},
$$

where $d(n)$ is the number of divisors of n.
(c)

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=-\sum_{p \text { prime }} \sum_{n=1}^{\infty} \frac{\log p}{p^{n s}}
$$

*(d)

$$
\log \zeta(s)=s \cdot \int_{2}^{\infty} \frac{\pi(x)}{x\left(x^{s}-1\right)} d x
$$

where $\pi(x)$ denotes the number of primes $p \leqslant x$.

Solution:

(a) The Euler product formula (Proposition 7.1.7) states that

$$
\zeta(s)=\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1} .
$$

By taking the inverse on both sides, we obtain

$$
\zeta(s)^{-1}=\prod_{p \text { prime }}\left(1-p^{-s}\right)
$$

For $N>0$, let $2=p_{1}<\cdots<p_{M}$ denote the prime numbers $\leqslant N$. We have

$$
\prod_{i=1}^{M}\left(1-p_{i}^{-s}\right)=\sum_{k_{1}, \ldots, k_{M} \in\{0,1\}}(-1)^{\sum_{i=1}^{M} k_{i}} \prod_{i=1}^{M} p_{i}^{-s k_{i}}=\sum_{\substack{n \in \mathbb{Z} \geq 1 \\ \text { prime factors of } n \text { are } \leqslant N}} \mu(n) n^{-s} .
$$

The right hand side converges absolutely for $N \rightarrow \infty$ as its terms are bounded in absolute value by a reordering of the terms of $\zeta(s)$ which converges absolutely. In the limit we thus obtain the desired formula by reordering the terms of the right hand side.
(b) See e.g. https://proofwiki.org/wiki/Square_of_Riemann_Zeta_Function using the fact that the product of two absolutely convergent series is absolutely convergent.
(c),(d) See pages 67-69 in [K. Chandrasekharan: Lectures on the Riemann Zeta Function. Lectures on mathematics and physics. Tata Institute of Fundamental Research, Bombay, 1953].
3. Let \mathbb{F}_{q} denote a finite field of cardinality q, and consider a ring of the form $A:=$ $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{s}\right)$ for polynomials f_{1}, \ldots, f_{s}. For every ideal $\mathfrak{a} \subset A$ of finite index $\operatorname{set} \operatorname{deg}(\mathfrak{a}):=\operatorname{dim}_{\mathbb{F}_{q}}(A / \mathfrak{a})$. The formal zeta function of A is the formal power series

$$
Z(T):=\prod_{\mathfrak{m} \subset A}\left(1-T^{\operatorname{deg}(\mathfrak{m})}\right)^{-1} \in \mathbb{Z}[[T]]^{\times}
$$

where the product is extended over all maximal ideals $\mathfrak{m} \subset A$. For any integer $n \geqslant 1$ let $\mathbb{F}_{q^{n}}$ be an extension of degree n and put

$$
X\left(\mathbb{F}_{q^{n}}\right):=\left\{\underline{x} \in\left(\mathbb{F}_{q^{n}}\right)^{r} \mid f_{1}(\underline{x})=\ldots=f_{s}(\underline{x})=0\right\} .
$$

(Explanation: Here X denotes the affine algebraic variety over \mathbb{F}_{q} defined by the equations $f_{1}=\ldots=f_{s}=0$, and A is its coordinate ring.)
(a) Prove that $Z(T)$ is well-defined and satisfies

$$
T \frac{d}{d T} \log Z(T)=T \frac{Z^{\prime}(T)}{Z(T)}=\sum_{n \geqslant 1}\left|X\left(\mathbb{F}_{q^{n}}\right)\right| \cdot T^{n}
$$

(b) If A is a Dedekind ring prove that

$$
Z(T)=\sum_{0 \neq \mathfrak{a} \subset A} T^{\operatorname{deg}(\mathfrak{a})}
$$

(c) In the case $A:=\mathbb{F}_{q}\left[X_{1}, \ldots, X_{r}\right]$ prove that

$$
Z(T)=\left(1-q^{r} T\right)^{-1}
$$

(d) Prove that the number N_{d} of monic irreducible polynomials of degree d in $\mathbb{F}_{q}[X]$ satisfies

$$
N_{d}=\frac{1}{d} \cdot \sum_{k \mid d} \mu\left(\frac{d}{k}\right) q^{k},
$$

where μ is the Möbius function.
Solution: (a) Any point $\underline{x} \in X\left(\mathbb{F}_{q^{n}}\right)$ determines an $\mathbb{F}_{q^{-}}$-algebra homomorphism

$$
\varphi_{\underline{x}}: A \longrightarrow \mathbb{F}_{q^{n}}, f(\underline{X}) \mapsto f(\underline{x}),
$$

and conversely any $\mathbb{F}_{q^{-}}$-algebra homomorphism $A \rightarrow \mathbb{F}_{q^{n}}$ arises in this way from a unique point in $X\left(\mathbb{F}_{q^{n}}\right)$. Moreover, the kernel $\mathfrak{m}_{\underline{x}}$ of $\varphi_{\underline{x}}$ is a maximal ideal of A and $\varphi_{\underline{x}}$ corresponds to an embedding $A / \mathfrak{m}_{\underline{x}} \hookrightarrow \mathbb{F}_{q^{n}}$. Thus the residue field $A / \mathfrak{m}_{\underline{x}}$ is an extension of \mathbb{F}_{q} of degree dividing n.
Conversely, for any maximal ideal $\mathfrak{m} \subset A$ the residue field A / \mathfrak{m} is a field extension of \mathbb{F}_{q} that is finitely generated as an \mathbb{F}_{q}-algebra. It is therefore a finite extension of \mathbb{F}_{q} of degree $\operatorname{deg}(\mathfrak{m})<\infty$. By Galois theory, there exists an embedding $A / \mathfrak{m} \hookrightarrow \mathbb{F}_{q^{n}}$ if and only if $\operatorname{deg}(\mathfrak{m}) \mid n$, and the number of embeddings is then $\operatorname{deg}(\mathfrak{m})$. Together this shows that

$$
\begin{equation*}
\left|X\left(\mathbb{F}_{q^{n}}\right)\right|=\sum_{\substack{\mathfrak{m} \subset A \\ \operatorname{deg}(\mathfrak{m}) \mid n}} \operatorname{deg}(\mathfrak{m}) \tag{*}
\end{equation*}
$$

Note that $X\left(\mathbb{F}_{q^{n}}\right)$ is a finite set, because there are only finitely many possibilities for the coefficients of \underline{x}. Thus $(*)$ implies that for every integer $d \geqslant 1$ there exist at most finitely many maximal ideals \mathfrak{m} with $\operatorname{deg}(\mathfrak{m})=d$. This shows that the product defining $Z(T)$ converges in $\mathbb{Z}[[T]]^{\times}$; hence $Z(T)$ is well-defined.
Now we can calculate

$$
\begin{aligned}
T \frac{d}{d T} \log Z(T) & =-T \frac{d}{d T} \sum_{\mathfrak{m} \subset A} \log \left(1-T^{\operatorname{deg}(\mathfrak{m})}\right) \\
& =-T \sum_{\mathfrak{m} \subset A} \frac{-\operatorname{deg}(\mathfrak{m}) T^{\operatorname{deg}(\mathfrak{m})-1}}{1-T^{\operatorname{deg}(\mathfrak{m})}} \\
& =\sum_{\mathfrak{m} \subset A} \operatorname{deg}(\mathfrak{m}) \sum_{k=1}^{\infty} T^{k \operatorname{deg}(\mathfrak{m})} \\
& =\sum_{n=1}^{\infty} \sum_{\mathfrak{m} \subset A} \operatorname{deg}(\mathfrak{m}) T^{n} \\
& =\sum_{n=1}^{\infty}\left|X\left(\mathbb{F}_{q^{n}}\right)\right| \cdot T^{n}
\end{aligned}
$$

(b) This follows from unique factorization of ideals in the same way as one proves the Euler product of the Riemann or Dedekind zeta function.
(c) In the case $A=\mathbb{F}_{q}\left[X_{1}, \ldots, X_{r}\right]$ there are no equations to satisfy; hence we have $\left|X\left(\mathbb{F}_{q^{n}}\right)\right|=q^{r n}$. By (a) we therefore get

$$
T \frac{d}{d T} \log Z(T)=\sum_{n \geqslant 1} q^{r n} T^{n}=\frac{q^{r} T}{1-q^{r} T}=T \frac{d}{d T} \log \frac{1}{1-q^{r} T}
$$

Integrating formally this shows that $Z(T)$ and $\left(1-q^{r} T\right)^{-1}$ differ only by a constant factor. Since both have constant coefficient 1, this factor must be 1. (Aliter: In the case $r=1$ one can use (b) instead of (a).)
(d) Setting $A:=\mathbb{F}_{q}[X]$, the number N_{d} is the number of maximal ideals $\mathfrak{m} \subset A$ of degree $\operatorname{deg}(\mathfrak{m})=d$. Thus by the formula ($*$) we have

$$
q^{n}=\sum_{d \mid n} d N_{d}
$$

By Möbius inversion, as in exercise 1 (b) of sheet 5 , this is equivalent to

$$
d N_{d}=\sum_{k \mid d} \mu\left(\frac{d}{k}\right) q^{k} .
$$

