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Solutions 12

Analytic class number formula, density

1. Let Γ be a complete lattice in a finitely dimensional euclidean vector space V of
dimension n. Consider a subset X ⊂ V whose boundary ∂X is (n − 1)-Lipschitz
parametrizable. Show that for t → ∞ we have∣∣Γ ∩ tX

∣∣ =
vol(X)

vol(V/Γ)
· tn +O(tn−1).

(A subset Y ⊂ V is k-Lipschitz parametrizable if there exist finitely many Lipschitz
continuous maps [0, 1]k → Y whose images cover Y .)

Solution: See VI §2 Thm. 2 in [Lang: Algebraic Number theory, Springer 1994].

2. Verify that the analytic class number formula is correct for K = Q.

Solution: For K = Q we have r = 1 and s = 0, and the class number of OQ = Z
is h = 1. As the group of units is finite, the regulator is R = 1. Moreover we have
w = |Z×| = 2 and dK = 1. The analytic class number formula therefore asserts
that

Ress=1 ζQ(s) =
2r(2π)sRh

w
√

|dK |
=

21 · (2π)0 · 1 · 1
2 · 1

= 1.

This agrees with the residue of the Riemann zeta function Ress=1 ζ(s) = 1.

3. Compute the residue of ζK(s) at s = 1 for

(a) K = Q(
√
5)

(b) K = Q(
√
11).

Solution:

(a) We have r = 2 and s = 0. By Example 5.1.4, the number of roots of unity
of K is w = 2. Moreover, by Proposition 3.5.2, the discriminant of K is 5.
Using discriminant bounds, we see that every ideal class in Cl(OK) contains
an ideal of norm ⩽ 2. It can be checked no ideal of norm 2 exists. Hence the
class number h is 1.

Next, we compute the regulator of K. In exercise 6 of sheet 7, we have seen
that 1+

√
5

2
is a fundamental unit of O×

K . Moreover, we have dimR(H) = 1 by

Lemma 5.2.3 and thus vol(H/Γ) = log(1+
√
5

2
).
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By Theorem 7.2.7 the residue is therefore

Ress=1 ζK(s) =
2r(2π)sRh

w
√

|dK |
=

22 · log(1+
√
5

2
)

2 ·
√
5

≈ 0.4304 . . .

(b) As in (a), we have r = 2 and s = 0 and w = 2. In exercise 1 of sheet 6, we
have seen that the class number h of K is 1.

By Proposition 5.4.2, we have O×
K = {a + b

√
11 | a, b ∈ Z, a2 − b211 = ±1}

and the fundamental unit is the element of O×
K ∩R>0 with the smallest value

for b. For b = 1, 2, the numbers b211 ± 1 are no square numbers. However,
we have 9 · 11 + 1 = 100 = 102 and thus 10 + 3

√
11 is a fundamental unit

of K. As in (a), we get vol(H/Γ) = log(10 + 3
√
11).

By Theorem 7.2.7 the residue is therefore

Ress=1 ζK(s) =
2r(2π)sRh

w
√
|dK |

=
22 · log(10 + 3

√
11))

2 ·
√
4 · 11

≈ 0.9025 . . .

4. For any subset A ⊂ Z>0 the value

γ(A) := lim
x→∞

|{n ⩽ x : n ∈ A}|
x

is called the natural density of A, if it exists, and the value

µ(A) := lim
s→1+

∑
n∈A n−s∑

n∈Z>0
n−s

is called the Dirichlet density of A, if it exists. Determine both densities of ...

(a) ... the set of all squares.

(b) ... the set of positive integers which do not contain the decimal digit 7.

(c) ... the set of positive integers which have an even number of decimal digits.

Solution:

(a) For the set of all squares we have

γ(A) = lim
x→∞

O(
√
x )

x
= 0

and

µ(A) = lim
s→1+

∑
n⩾1 n

−2s∑
n⩾1 n

−s
= lim

s→1+

ζ(2s)

ζ(s)
= lim

s→1+

O(1)
1

s−1
+O(1)

= 0.
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(b) First we fix an integer k ⩾ 1 and let Ak be the set of positive integers n whose
last k decimal digits are ̸= 7. This condition depends only on n modulo 10k

and allows precisely 9k of the 10k residue classes modulo 10k. Among any
10k successive positive integers there are therefore at most 9k that lie in Ak.
For any x ∈ R it follows that

Nk(x) :=
∣∣{n ⩽ x : n ∈ Ak

}∣∣ ⩽ ( 9
10
)kx+ 10k.

Therefore

lim sup
x→∞

Nk(x)

x
⩽ lim sup

x→∞

(
( 9
10
)k + 10k

x

)
= ( 9

10
)k.

On the other hand, for any integer k ⩾ 1 there are at most 9k integers
n ∈ A ∩ [10k−1, 10k). Therefore∑

n∈A

n−1 =
∑
k⩾1

∑
n∈A

10k−1⩽n<10k

n−1 ⩽
∑
k⩾1

9k

10k−1
= 90

and so

lim sup
s→1+

∑
n∈A n−s∑
n⩾1 n

−s
⩽ lim

s→1+

90

O(1) + 1
s−1

= 0.

In summary A has natural and Dirichlet density 0.

(c) Let A be the set of positive integers which have an even number of decimal
digits. Then for any k ⩾ 1, all integers n satisfying 102k−1 ⩽ n < 102k lie
in A and all those satisfying 102k ⩽ n < 102k+1 lie outside A. Thus

|{n ⩽ 102k : n ∈ A}|
102k

⩾
|{102k−1 ⩽ n < 102k}|

102k
=

102k − 102k−1

102k
=

9

10

and

|{n ⩽ 102k+1 : n ∈ A}|
102k+1

⩽
|{1 ⩽ n < 102k}|+ 1

102k+1
=

102k

102k+1
=

1

10
.

Therefore the natural density of A does not exist.

To compute the Dirichlet density we observe that for any s > 1 the function
x 7→ x−s is monotone decreasing; hence for every n ⩾ 2 we have∫ n+1

n

x−s dx ⩽ n−s ⩽
∫ n

n−1

x−s dx.

For any k ⩾ 1 we therefore have∫ 102k

102k−1

x−s dx ⩽
102k−1∑

n=102k−1

n−s ⩽ (102k−1)−s+
102k∑

n=102k−1+1

n−s ⩽ (102k−1)−s+

∫ 102k

102k−1

x−s dx.
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Here the integral computes to∫ 102k

102k−1

x−s dx =
x1−s

1− s

∣∣∣∣102k
102k−1

=
(102k)1−s − (102k−1)1−s

1− s
.

Summing over k we deduce that∑
n∈A

n−s =
∑
k⩾1

(
O
(
(102k−1)−s

)
+

(102k)1−s − (102k−1)1−s

1− s

)
= O

(∑
k⩾1

10−2(k−1)s · 10−s

)
+
∑
k⩾1

102(k−1)(1−s) · 10
2(1−s) − 101−s

1− s

= O

(
10−s

1− 10−2s

)
+

1

1− 102(1−s)
· 10

1−s − 102(1−s)

s− 1

= O(1) +
1

(10s−1 + 1)(s− 1)

= O(1) +
1

2(s− 1)

for s → 1+. Since
∑

n∈Z>0
n−s = 1

s−1
+ O(1), we find that the Dirichlet

density exists and has the value

µ(A) = lim
s→1+

1
2(s−1)

+O(1)
1

s−1
+O(1)

=
1

2
.
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