Exercise sheet 13

Analytic class number formula, density

1. Determine the Dirichlet density of the set of rational primes $p \equiv 3 \bmod (4)$ that split completely in the field $\mathbb{Q}(\sqrt[3]{2})$.
2. Let L / K be an extension of number fields. Prove that $L=K$ if and only if the set of primes $\mathfrak{p} \subset \mathcal{O}_{K}$ which are totally split in L has Dirichlet density $>\frac{1}{2}$.
3. Let L / K be an extension of number fields. Prove that L / K is galois if and only if for almost all primes $\mathfrak{p} \subset \mathcal{O}_{K}$, if there exists a prime $\mathfrak{P} \mid \mathfrak{p}$ of \mathcal{O}_{L} with $f_{\mathfrak{P} / \mathfrak{p}}=1$, then \mathfrak{p} is totally split in \mathcal{O}_{L}.
4. Let a be an integer that is not a third power. Let A be the set of prime numbers p such that $a \bmod (p)$ is a third power in \mathbb{F}_{p}.
(a) Prove that A and its complement are both infinite.
(b) Prove that there is no integer N such that the property $p \in A$ depends only on the residue class of p modulo (N).
*5. For $d, N \geqslant 1$, consider the set $P_{d, N}$ of polynomials in one variable of degree at most d whose coefficients have absolute value $\leqslant N$. Consider the subset $Q_{d, N}$ of those polynomials whose Galois group over \mathbb{Q} is the symmetric group S_{d}. Prove that $\lim _{N \rightarrow \infty} \frac{\left|Q_{d, N}\right|}{\left|P_{d, N}\right|}=1$.
Hint: Look at the factorization of polynomials modulo prime numbers.
5. Consider an integer $m \geqslant 1$ and let $L \subset \mathbb{Q}\left(\mu_{m}\right)$ be the intermediate field corresponding to a subgroup $\Gamma<(\mathbb{Z} / m \mathbb{Z})^{\times} \cong \operatorname{Gal}\left(\mathbb{Q}\left(\mu_{m}\right) / \mathbb{Q}\right)$. Express the zeta function $\zeta_{L}(s)$ as a product of Dirichlet L-functions.
