Number Theory I

Exercise sheet 13

ANALYTIC CLASS NUMBER FORMULA, DENSITY

- 1. Determine the Dirichlet density of the set of rational primes $p \equiv 3 \mod (4)$ that split completely in the field $\mathbb{Q}(\sqrt[3]{2})$.
- 2. Let L/K be an extension of number fields. Prove that L = K if and only if the set of primes $\mathfrak{p} \subset \mathcal{O}_K$ which are totally split in L has Dirichlet density $> \frac{1}{2}$.
- 3. Let L/K be an extension of number fields. Prove that L/K is galois if and only if for almost all primes $\mathfrak{p} \subset \mathcal{O}_K$, if there exists a prime $\mathfrak{P}|\mathfrak{p}$ of \mathcal{O}_L with $f_{\mathfrak{P}/\mathfrak{p}} = 1$, then \mathfrak{p} is totally split in \mathcal{O}_L .
- 4. Let a be an integer that is not a third power. Let A be the set of prime numbers p such that $a \mod (p)$ is a third power in \mathbb{F}_p .
 - (a) Prove that A and its complement are both infinite.
 - (b) Prove that there is no integer N such that the property $p \in A$ depends only on the residue class of p modulo (N).
- *5. For $d, N \ge 1$, consider the set $P_{d,N}$ of polynomials in one variable of degree at most d whose coefficients have absolute value $\le N$. Consider the subset $Q_{d,N}$ of those polynomials whose Galois group over \mathbb{Q} is the symmetric group S_d . Prove that $\lim_{N\to\infty} \frac{|Q_{d,N}|}{|P_{d,N}|} = 1$.

Hint: Look at the factorization of polynomials modulo prime numbers.

6. Consider an integer $m \ge 1$ and let $L \subset \mathbb{Q}(\mu_m)$ be the intermediate field corresponding to a subgroup $\Gamma < (\mathbb{Z}/m\mathbb{Z})^{\times} \cong \operatorname{Gal}(\mathbb{Q}(\mu_m)/\mathbb{Q})$. Express the zeta function $\zeta_L(s)$ as a product of Dirichlet *L*-functions.