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Solutions 13

Analytic class number formula, density

1. Determine the Dirichlet density of the set of rational primes p ≡ 3 mod (4) that
split completely in the field Q( 3

√
2).

Solution: On the one hand put K := Q( 3
√
2), so that M := Q( 3

√
2, e2πi/3) is a

galois closure of K/Q. Then by exercise 1 of sheet 9 a prime number is totally split
in OK if and only if it is totally split in OM . On the other hand put L := Q(i).
Then by exercise 2 of sheet 8 an odd prime number p is non-split in OL if and
only if p ≡ 3 mod (4). Thus, we want the set of primes that split totally in OM

but not in OL. By Proposition 7.5.5, this means that they split in M but not in
ML. By Propositions 7.5.4 and 7.5.5 the desired Dirichlet density is therefore

1

[M/Q]
− 1

[ML/Q]
=

1

6
− 1

12
=

1

12
.

Aliter: The fields M and L are linearly disjoint galois extensions of Q; hence
ML/Q is galois with Galois group Gal(M/Q) × Gal(L/Q) ∼= S3 × S2. Aside
from finitely many ramified primes, we want the set of rational primes p whose
associated Frobenius element in Gal(ML/Q) is equal to (1, σ) for 1 ̸= σ ∈ S2. This
element is alone in its conjugacy class, hence by the Cebotarev density theorem
the set in question has Dirichlet density 1/|Gal(ML/Q)| = 1/12.

2. Let L/K be an extension of number fields. Prove that L = K if and only if the
set of primes p ⊂ OK which are totally split in L has Dirichlet density > 1

2
.

Solution: If L = K, then all primes of OK are totally split in OL by definition.
Conversely, let M denote the galois closure of L/K. By exercise 1 of sheet 8 a
prime ideal p of OK is totally split in OL if and only if it is totally split in OM .
By Proposition 7.5.4 we therefore have

µ(SL/K) = µ(SM/K) =
1

[M/K]
⩽

1

[L/K]
.

Thus if µ(SL/K) >
1
2
, we have [L/K] < 2 and hence L = K.

3. Let L/K be an extension of number fields. Prove that L/K is galois if and only
if for almost all primes p ⊂ OK , if there exists a prime P|p of OL with fP/p = 1,
then p is totally split in OL.
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Solution: As in the lecture, let SL/K be the set of non-zero prime ideals p of OK

which are totally split in OL. Let PL/K be the set of non-zero prime ideals p of
OK for which there exists a prime P|p of OL with fP/p = 1. Then we must show
that L/K is galois if and only if the set XL/K := PL/K ∖ SL/K is finite.

If L/K is galois, for all primes p ⊂ OK we have [L/K] = rpepfp; hence SL/K is
the set of p with epfp = 1, and PL/K is the set of p with fp = 1. Thus XL/K is
contained in the finite set of p with ep > 1 and is therefore itself finite.

Conversely, suppose that L/K is not galois. Let M/K be its galois closure. Then
M/L is a proper galois extension. By Proposition 7.5.4 the set SM/L of primes
of OL which are totally split in OM thus has Dirichlet density 1

[M/L]
< 1. Its

complement A therefore has Dirichlet density 1 − 1
[M/L]

> 0, and by Proposition
7.5.2 so does the subset of primes in A of absolute degree 1. Thus there exist
infinitely many primes P ⊂ OK of absolute degree 1 which are not totally split
in OM . But any such P has residue degree fP/p = 1, hence the corresponding
prime p := P ∩ OK lies in XL/K . Thus the set XL/K is infinite, as desired.

4. Let a be an integer that is not a third power. Let A be the set of prime numbers
p such that a mod (p) is a third power in Fp.

(a) Prove that A and its complement are both infinite.

(b) Prove that there is no integer N such that the property p ∈ A depends only
on the residue class of p modulo (N).

Solution: By assumption the cubic polynomial X3− a does not have a root in Z;
hence by the Gauss lemma also not in Q; so it is irreducible. Thus the field
K := Q( 3

√
a) is isomorphic to Q[X]/(X3−a), and its ring of integers OK contains

the subring O := Z[ 3
√
a] ∼= Z[X]/(X3−a). Since both O ⊂ OK are free Z-modules

of rank 3, the index d := [OK : O] is finite. Thus for any prime p ∤ d we obtain a
natural isomorphism

Fp[X]/(X3 − a) ∼= O/pO ∼−→ OK/pOK .

For any such p it follows that p ∈ A if and only if there exists a homomorphism
OK/pOK → Fp, that is, if and only if there exists a prime p|p of OK with fp/p = 1.

Next, the ratio of two distinct roots of X3− a is a primitive third root of unity ζ3,
hence the galois closure of K/Q is K̃ := KL with the imaginary quadratic field
L := Q(ζ3). Moreover Gal(K̃/Q) ∼= S3 with the normal subgroup Gal(K̃/L) ∼= A3.

(a) Since K̃/Q is galois of degree 6, by Proposition 7.5.4 the set of rational primes
that are totally split in OK̃ has Dirichlet density 1

6
; in particular it is infinite.

These primes are also totally split in the intermediate field K; hence by the above
remarks almost all of them lie in A. Thus A is infinite.
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On the other hand, since L/Q is galois of degree 2, the same proposition shows
that the set of rational primes that split in OL has Dirichlet density 1

2
. As this

set contains the set of primes that are totally split in OK̃ , it follows that the set
of rational primes that are totally split in OL but not in OK̃ has Dirichlet density
1
2
− 1

6
= 1

3
. In particular there are infinitely many such p. For each of these

the decomposition group at any prime p̃ ⊂ OK̃ above p is non-trivial, but acts
trivially on L; hence it is equal to Gal(K̃/L) ∼= A3. Since Gal(K̃/K) ∼= S2 < S3

and S3 = S2 · A3, by exercise 1 (b) on sheet 9 it follows that there is only one
prime p ⊂ OK above p. As only finitely many primes are ramified in OK , for all
the other such p we must have fp/p = 3. By the above remarks almost all of these
p thus lie in the complement of A, which is therefore also infinite.

(b) If there is such an N , we can without loss of generality assume that 3|N , so
that L is contained in the cyclotomic field L̂ := Q(µN). Then K̂ := KL̂ is galois of
degree 3 over L̂. Since L̂/Q is galois of degree φ(N), the extension K̂/Q is galois
of degree 3φ(N). By the same arguments as in (a) applied to K̂/L̂/Q instead of
K̃/L/Q we find that of the rational primes which are totally split in OL̂, infinitely
many lie in A and infinitely many in the complement of A. But by Example
6.5.5 the rational primes which are totally split in OL̂ are precisely those that
are congruent to 1 modulo (N). Thus the congruence class p mod (N) does not
determine whether p ∈ A or not; hence such N cannot exist.

*5. For d,N ⩾ 1, consider the set Pd,N of polynomials in one variable of degree at
most d whose coefficients have absolute value ⩽ N . Consider the subset Qd,N of
those polynomials whose Galois group over Q is the symmetric group Sd. Prove

that limN→∞
|Qd,N |
|Pd,N | = 1.

Hint: Look at the factorization of polynomials modulo prime numbers.

Solution: For the first known proof see [van der Waerden, B. L.: Die Seltenheit
der Gleichungen mit Affekt. (German) Math. Ann. 109 (1934), no.1, 13–16.]
https://mathscinet.ams.org/mathscinet/article?mr=1512878

6. Consider an integer m ⩾ 1 and let L ⊂ Q(µm) be the intermediate field cor-
responding to a subgroup Γ < (Z/mZ)× ∼= Gal(Q(µm)/Q). Express the zeta
function ζL(s) as a product of Dirichlet L-functions.

Solution: Let XL be the set of homomorphisms χ : (Z/mZ)× → C× with
χ|Γ = 1. For any χ ∈ XL let χprim be the associated primitive Dirichlet character
of modulus dividing m. We claim that ζL(s) is the product of the L-functions
L(χprim, s) for all χ ∈ XL.

Since
ζL(s) =

∏
p

(
1− Nm(p)−s

)−1
=

∏
p

∏
p|p

(
1− Nm(p)−s

)−1

3



and
L(χprim, s) =

∏
p

(
1− χprim(p)p

−s
)−1

it suffices to prove for every fixed p that∏
p|p

(
1− Nm(p)−s

)
=

∏
χ∈XL

(
1− χprim(p)p

−s
)
. (∗)

To achieve this, recall from Proposition 6.3.4 that the prime ideals p1, . . . , pr above
p satisfy pOL = pe1 · · · per with [k(pi)/Fp] = f for all i and [L : Q] = ref . Thus
Nm(pi) = pf for all i; hence the left hand side of (∗) is equal to (1 − p−fs)r.
Abbreviating T = p−s, we are therefore reduced to showing that

(1− T f )r =
∏

χ∈XL

(
1− χprim(p)T

)
. (∗∗)

Suppose first that p ∤ m. Then p is unramified in Q(µm) and hence also in L.
Thus e = 1. Also, by Example 6.5.5 the Frobenius substitution at p for the
extension Q(µm)/Q corresponds to the residue class p̄ under the isomorphism
Gal(Q(µm)/Q) ∼= (Z/mZ)×. The Frobenius substitution at p for L/Q thus corre-
sponds to the image [p̄] of p̄ in the factor group Gal(L/Q) ∼= (Z/mZ)×/Γ. Moreover
f and r are then simply the order and the index of the subgroup ⟨[p̄]⟩.
Now observe the following elementary facts from group theory:

Lemma 1: For any finite abelian group G there are precisely |G| different homo-
morphisms G → C×.

Proof: By the structure theorem for finite abelian groups there is an isomorphism
G ∼=

∏r
i=1 Z/eiZ. Any homomorphism must map the generator of the i-th factor to

an ei-th root of unity, and conversely, any choice of an ei-th root of unity for every
i extends uniquely to a homomorphism G → C×. The number of homomorphisms
is therefore

∏r
i=1 ei = |G|.

Lemma 2: For any finite abelian group G and any subgroup G′, every homomor-
phism G′ → C× possesses precisely [G : G′] different extensions to a homomor-
phism G → C×.

Proof: First note that for any two homomorphisms G → C× the quotient is
again a homomorphism, and two homomorphisms coincide on G′ if and only if
their quotient is trivial on G′. On the other hand, applying Lemma 1 to the
factor group G/G′ shows that there are precisely |G/G′| different homomorphisms
G → C× which are trivial on G′. Combining these statements shows that for every
homomorphism G → C×, there are precisely |G|/|G′| homomorphisms (including
the given one) which have the same restriction to G′. Since the total number of
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homomorphisms G → C× is |G| by Lemma 1, these homomorphisms therefore
decompose into |G′| sets of size |G|/|G′| with the same restriction to G′. As the
number of homomorphisms G′ → C× is already |G′| by Lemma 1, it follows that
each of these extends in precisely |G|/|G′| ways to a homomorphism G → C×.

Applying these lemmas, note that by Lemma 1 there are precisely f homomor-
phisms ⟨[p̄]⟩ → C×, mapping the generator [p̄] to the f distinct f -th roots of
unity. By Lemma 2 each of these possesses precisely [L/K]/f = r different ex-
tensions to a homomorphism (Z/mZ)×/Γ → C×. But giving a homomorphism
(Z/mZ)×/Γ → C× is equivalent to giving a homomorphism (Z/mZ)× → C× which
vanishes on Γ. Thus by the definition of XL, for every homomorphism χ ∈ XL

the element χ(p̄) ∈ C× is an f -th root of unity, and conversely, for every f -th root
of unity ζ there are precisely r homomorphisms χ ∈ XL with χ(p̄) = ζ. Together
this shows that ∏

χ∈XL

(
1− χ(p)T

)
=

∏
ζ∈µf

(1− ζT )r = (1− T f )r

is equal to the left hand side of (∗∗). Finally, since p is coprime to m, for every
χ ∈ XL we have χ(p) = χprim(p). This proves the equality (∗∗) in the case p ∤ m.

Now suppose that p|m and write m = pkm′ with p ∤ m′. Then Q(µm) is gener-
ated by the linearly disjoint extensions Q(µpk) and Q(µm′) of Q, and the induced

isomorphism Gal(Q(µm)/Q)
∼−→ Gal(Q(µpk)/Q)×Gal(Q(µm′)/Q) corresponds to

the isomorphism (Z/mZ)× ∼−→ (Z/pkZ)××(Z/m′Z)× from the Chinese remainder
theorem. As p is totally ramified in Q(µpk) and unramified in Q(µm′), the inertia
group above p is precisely the subgroup Gal(Q(µm)/Q(µm′)) which corresponds to
the factor (Z/pkZ)× × {1} of the latter group.

Passing to L the main theorem of Galois theory implies that the image of the inertia
group (Z/pkZ)××{1} in (Z/mZ)×/Γ corresponds to the subfield L′ := L∩Q(µm′),
whose associated subgroup Γ′ < (Z/m′Z)× is precisely the image of Γ. This shows
that p is unramified in OL′ and that every prime p′ of OL′ above p is totally
ramified in OL. Thus the primes of OL′ above p are in bijection with those of
OL and have the same residue field. The left hand side of (∗∗) for L ⊂ Q(µm) is
therefore equal to that for L′ ⊂ Q(µm′). We have already seen that the latter is
equal to ∏

χ∈XL′

(
1− χprim(p)T

)
.

By the definition of XL and XL′ this in turn is equal to∏
χ∈XL

χ trivial on (Z/pkZ)××{1}

(
1− χprim(p)T

)
.
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Finally, for every χ ∈ XL which is non-trivial on (Z/pkZ)× × {1}, the modulus
of the associated primitive character χprim is divisible by p, which implies that
χprim(p) = 0. Thus the two sides of (∗∗) are also equal in the case p|m, and we
are done.
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