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ANALYTIC CLASS NUMBER FORMULA, DENSITY

1. Determine the Dirichlet density of the set of rational primes p = 3 mod (4) that
split completely in the field Q(v/2).

Solution: On the one hand put K := Q(+¥/2), so that M := Q(3/2,¢*/3) is a
galois closure of K/Q. Then by exercise 1 of sheet 9 a prime number is totally split
in Ok if and only if it is totally split in Oy;. On the other hand put L := Q(q).
Then by exercise 2 of sheet 8 an odd prime number p is non-split in Oy, if and
only if p = 3 mod (4). Thus, we want the set of primes that split totally in Oy,
but not in Op. By Proposition 7.5.5, this means that they split in M but not in
M L. By Propositions 7.5.4 and 7.5.5 the desired Dirichlet density is therefore
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Aliter: The fields M and L are linearly disjoint galois extensions of Q; hence
ML/Q is galois with Galois group Gal(M/Q) x Gal(L/Q) = S3 x Sy. Aside
from finitely many ramified primes, we want the set of rational primes p whose
associated Frobenius element in Gal(M L/Q) is equal to (1,0) for 1 # o € S,. This
element is alone in its conjugacy class, hence by the Cebotarev density theorem
the set in question has Dirichlet density 1/| Gal(ML/Q)| = 1/12.

2. Let L/K be an extension of number fields. Prove that L = K if and only if the
set of primes p C Ok which are totally split in L has Dirichlet density > %

Solution: If L = K, then all primes of Ok are totally split in O by definition.
Conversely, let M denote the galois closure of L/K. By exercise 1 of sheet 8 a
prime ideal p of Ok is totally split in Oy if and only if it is totally split in O,,.
By Proposition 7.5.4 we therefore have

L1
M/K] = [L/K]

p(Seyi) = p(Suyx) = i
Thus if u(Sp/k) > %, we have [L/K] < 2 and hence L = K.

3. Let L/K be an extension of number fields. Prove that L/K is galois if and only
if for almost all primes p C Ok, if there exists a prime Blp of O, with fy/, = 1,
then p is totally split in Op.



Solution: As in the lecture, let S; /i be the set of non-zero prime ideals p of Ok
which are totally split in Op. Let Pp/x be the set of non-zero prime ideals p of
Ok for which there exists a prime P|p of Op, with fy/, = 1. Then we must show
that L/K is galois if and only if the set X,k := Pr/x \ Sp,/k is finite.

If L/K is galois, for all primes p C Ok we have [L/K] = rye, fy; hence Sp i is
the set of p with e,f, = 1, and Pp/k is the set of p with f, = 1. Thus X /g is
contained in the finite set of p with e, > 1 and is therefore itself finite.

Conversely, suppose that L/K is not galois. Let M /K be its galois closure. Then
M/L is a proper galois extension. By Proposition 7.5.4 the set Sy;/ of primes
of Op which are totally split in O, thus has Dirichlet density [M—I/L] < 1. Tts

complement A therefore has Dirichlet density 1 — ﬁ > 0, and by Proposition
7.5.2 so does the subset of primes in A of absolute degree 1. Thus there exist
infinitely many primes 8 C O of absolute degree 1 which are not totally split
in Oy. But any such B has residue degree fy/, = 1, hence the corresponding
prime p := ‘P N O lies in Xy k. Thus the set Xk is infinite, as desired.

. Let a be an integer that is not a third power. Let A be the set of prime numbers
p such that a mod (p) is a third power in F,,.

(a) Prove that A and its complement are both infinite.

(b) Prove that there is no integer N such that the property p € A depends only
on the residue class of p modulo (N).

Solution: By assumption the cubic polynomial X? — a does not have a root in Z;
hence by the Gauss lemma also not in Q; so it is irreducible. Thus the field
K := Q(/a) is isomorphic to Q[X]/(X® — a), and its ring of integers Ok contains
the subring O := Z[¥/a] 2 Z[X]/(X? —a). Since both O C Oy are free Z-modules
of rank 3, the index d := [Of : O] is finite. Thus for any prime p 1 d we obtain a
natural isomorphism

Fyo[X]/(X? —a) = O/pO — Ok/pOk.

For any such p it follows that p € A if and only if there exists a homomorphism
Ok /pOk — F,, that is, if and only if there exists a prime p|p of O with f,/, = 1.

Next, the ratio of two distinct roots of X 3 —a is a primitive third root of unity (s,
hence the galois closure of K/Q is K := KL with the imaginary quadratic field
L := Q((3). Moreover Gal(K/Q) = S3 with the normal subgroup Gal(K /L) = As.

(a) Since K /Q is galois of degree 6, by Proposition 7.5.4 the set of rational primes
that are totally split in Oy has Dirichlet density %; in particular it is infinite.
These primes are also totally split in the intermediate field K; hence by the above
remarks almost all of them lie in A. Thus A is infinite.
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On the other hand, since L/Q is galois of degree 2, the same proposition shows
that the set of rational primes that split in O has Dirichlet density % As this
set contains the set of primes that are totally split in O, it follows that the set
of rational primes that are totally split in O but not in O has Dirichlet density
% — % = % In particular there are infinitely many such p. For each of these
the decomposition group at any prime p C Op above p is non-trivial, but acts
trivially on L; hence it is equal to Gal(K /L) = As. Since Gal(K/K) = S, < Ss
and S3 = Sy - As, by exercise 1 (b) on sheet 9 it follows that there is only one
prime p C O above p. As only finitely many primes are ramified in O, for all
the other such p we must have f,/,, = 3. By the above remarks almost all of these

p thus lie in the complement of A, which is therefore also infinite.

(b) If there is such an N, we can without loss of generality assume that 3|N, so
that L is contained in the cyclotomic field L := Q(uy). Then K := KL is galois of
degree 3 over L. Since L/Q is galois of degree p(N), the extension K /Q is galois
of degree 3p(N). By the same arguments as in (a) applied to K /L/Q instead of
K /L/Q we find that of the rational primes which are totally split in O;, infinitely
many lie in A and infinitely many in the complement of A. But by Example
6.5.5 the rational primes which are totally split in O; are precisely those that
are congruent to 1 modulo (N). Thus the congruence class p mod (V) does not
determine whether p € A or not; hence such N cannot exist.

For d, N > 1, consider the set P;x of polynomials in one variable of degree at
most d whose coefficients have absolute value < N. Consider the subset Q)4 n of

those polynomials whose Galois group over Q is the symmetric group S;. Prove
|Qa,n| __
[Pan]

Hint: Look at the factorization of polynomials modulo prime numbers.

Solution: For the first known proof see [van der Waerden, B. L.: Die Seltenheit
der Gleichungen mit Affekt. (German) Math. Ann. 109 (1934), no.1, 13-16.]
https://mathscinet.ams.org/mathscinet/article?mr=1512878

Consider an integer m > 1 and let L C Q(un,) be the intermediate field cor-
responding to a subgroup I' < (Z/mZ)* = Gal(Q(um)/Q). Express the zeta
function (1,(s) as a product of Dirichlet L-functions.

Solution:  Let X, be the set of homomorphisms x: (Z/mZ)* — C* with
x|I'=1. For any x € X[, let xprm be the associated primitive Dirichlet character
of modulus dividing m. We claim that (;(s) is the product of the L-functions
L(Xprim, s) for all x € X.

¢e(s) = [T —Nm@p)=) ™" = T]T]( — Nm(p)=)""

p P plp

Since



and B
L(Xprimv 5) = H(l - Xprim(p)pis)

p

it suffices to prove for every fixed p that

H(l —Nm(p)~*) = H (1 = Xprim(p)p ™). (*)

plp XEXL

To achieve this, recall from Proposition 6.3.4 that the prime ideals pq, ..., p, above
p satisfy pOp = p§---p¢ with [k(p;)/F,] = f for all ¢ and [L : Q] = ref. Thus
Nm(p;) = p/ for all i; hence the left hand side of (x) is equal to (1 — p=/*)".
Abbreviating T = p~*, we are therefore reduced to showing that

-1 =TI (1= xorm®)T). (4)

X€EXL,

Suppose first that p ¥ m. Then p is unramified in Q(u,,) and hence also in L.
Thus e = 1. Also, by Example 6.5.5 the Frobenius substitution at p for the
extension Q(u,,)/Q corresponds to the residue class p under the isomorphism
Gal(Q(um)/Q) = (Z/mZ)*. The Frobenius substitution at p for L/Q thus corre-
sponds to the image [p] of p in the factor group Gal(L/Q) = (Z/mZ)*/T". Moreover
f and r are then simply the order and the index of the subgroup ([p]).

Now observe the following elementary facts from group theory:

Lemma 1: For any finite abelian group G there are precisely |G| different homo-
morphisms G — C*.

Proof: By the structure theorem for finite abelian groups there is an isomorphism
G =[1._,Z/e;Z. Any homomorphism must map the generator of the i-th factor to
an e;-th root of unity, and conversely, any choice of an e;-th root of unity for every
1 extends uniquely to a homomorphism G — C*. The number of homomorphisms
is therefore [['_, e; = |G|. O

Lemma 2: For any finite abelian group G and any subgroup G’, every homomor-
phism G’ — C* possesses precisely [G : G'] different extensions to a homomor-
phism G — C*.

Proof: First note that for any two homomorphisms G — C* the quotient is
again a homomorphism, and two homomorphisms coincide on G’ if and only if
their quotient is trivial on G’. On the other hand, applying Lemma 1 to the
factor group G/G’ shows that there are precisely |G /G| different homomorphisms
G — C* which are trivial on G'. Combining these statements shows that for every
homomorphism G — C*, there are precisely |G|/|G’| homomorphisms (including
the given one) which have the same restriction to G’. Since the total number of



homomorphisms G — C* is |G| by Lemma 1, these homomorphisms therefore
decompose into |G'| sets of size |G|/|G’| with the same restriction to G'. As the
number of homomorphisms G’ — C* is already |G’| by Lemma 1, it follows that
each of these extends in precisely |G|/|G’| ways to a homomorphism G — C*. [

Applying these lemmas, note that by Lemma 1 there are precisely f homomor-
phisms ([p]) — C*, mapping the generator [p] to the f distinct f-th roots of
unity. By Lemma 2 each of these possesses precisely [L/K]/f = r different ex-
tensions to a homomorphism (Z/mZ)*/I' — C*. But giving a homomorphism
(Z/mZ)*/T" — C* is equivalent to giving a homomorphism (Z/mZ)* — C* which
vanishes on I'. Thus by the definition of X, for every homomorphism y € X,
the element x(p) € C* is an f-th root of unity, and conversely, for every f-th root
of unity ¢ there are precisely » homomorphisms y € X with x(p) = (. Together
this shows that

I @=xtw1) = J[-¢)y = a-1')

XEXL Cepys

is equal to the left hand side of (xx). Finally, since p is coprime to m, for every
X € X1, we have x(p) = Xprim(p). This proves the equality (s*) in the case p t m.

Now suppose that p|m and write m = p*m’ with p { m/. Then Q(p,,) is gener-
ated by the linearly disjoint extensions Q(p,+) and Q(jm/) of Q, and the induced

isomorphism Gal(Q(4n,)/Q) — Gal(Q(p,x)/Q) x Gal(Q(pm)/Q) corresponds to
the isomorphism (Z/mZ)* — (Z/p*Z)* x (Z/m/Z)* from the Chinese remainder
theorem. As p is totally ramified in Q(s,+) and unramified in Q(p,,/), the inertia
group above p is precisely the subgroup Gal(Q(gtm,)/Q( g )) which corresponds to
the factor (Z/p*Z)* x {1} of the latter group.

Passing to L the main theorem of Galois theory implies that the image of the inertia
group (Z/p*7Z)* x {1} in (Z/mZ)*/T corresponds to the subfield L’ := LNQ(p,),
whose associated subgroup IV < (Z/m/Z)* is precisely the image of I'. This shows
that p is unramified in Op and that every prime p’ of Op above p is totally
ramified in Oy. Thus the primes of O above p are in bijection with those of
Oy, and have the same residue field. The left hand side of (xx) for L C Q(u,) is
therefore equal to that for L' C Q(p,). We have already seen that the latter is

equal to
H (1 - Xprim<p)T)'

XEXL/
By the definition of X and X/ this in turn is equal to

H (1 - Xprlm(p)T)

XE€EXT,
X trivial on (Z/pFZ)X x {1}



Finally, for every x € X which is non-trivial on (Z/p*Z)* x {1}, the modulus
of the associated primitive character Xpmm is divisible by p, which implies that
Xprim(P) = 0. Thus the two sides of (x*) are also equal in the case p|m, and we
are done.



