Solutions 13

Analytic class number formula, density

1. Determine the Dirichlet density of the set of rational primes $p \equiv 3 \bmod (4)$ that split completely in the field $\mathbb{Q}(\sqrt[3]{2})$.
Solution: On the one hand put $K:=\mathbb{Q}(\sqrt[3]{2})$, so that $M:=\mathbb{Q}\left(\sqrt[3]{2}, e^{2 \pi i / 3}\right)$ is a galois closure of K / \mathbb{Q}. Then by exercise 1 of sheet 9 a prime number is totally split in \mathcal{O}_{K} if and only if it is totally split in \mathcal{O}_{M}. On the other hand put $L:=\mathbb{Q}(i)$. Then by exercise 2 of sheet 8 an odd prime number p is non-split in \mathcal{O}_{L} if and only if $p \equiv 3 \bmod$ (4). Thus, we want the set of primes that split totally in \mathcal{O}_{M} but not in \mathcal{O}_{L}. By Proposition 7.5.5, this means that they split in M but not in $M L$. By Propositions 7.5.4 and 7.5.5 the desired Dirichlet density is therefore

$$
\frac{1}{[M / \mathbb{Q}]}-\frac{1}{[M L / \mathbb{Q}]}=\frac{1}{6}-\frac{1}{12}=\frac{1}{12} .
$$

Aliter: The fields M and L are linearly disjoint galois extensions of \mathbb{Q}; hence $M L / \mathbb{Q}$ is galois with Galois $\operatorname{group} \operatorname{Gal}(M / \mathbb{Q}) \times \operatorname{Gal}(L / \mathbb{Q}) \cong S_{3} \times S_{2}$. Aside from finitely many ramified primes, we want the set of rational primes p whose associated Frobenius element in $\operatorname{Gal}(M L / \mathbb{Q})$ is equal to $(1, \sigma)$ for $1 \neq \sigma \in S_{2}$. This element is alone in its conjugacy class, hence by the Cebotarev density theorem the set in question has Dirichlet density $1 /|\operatorname{Gal}(M L / \mathbb{Q})|=1 / 12$.
2. Let L / K be an extension of number fields. Prove that $L=K$ if and only if the set of primes $\mathfrak{p} \subset \mathcal{O}_{K}$ which are totally split in L has Dirichlet density $>\frac{1}{2}$.
Solution: If $L=K$, then all primes of \mathcal{O}_{K} are totally split in \mathcal{O}_{L} by definition. Conversely, let M denote the galois closure of L / K. By exercise 1 of sheet 8 a prime ideal \mathfrak{p} of \mathcal{O}_{K} is totally split in \mathcal{O}_{L} if and only if it is totally split in \mathcal{O}_{M}. By Proposition 7.5.4 we therefore have

$$
\mu\left(S_{L / K}\right)=\mu\left(S_{M / K}\right)=\frac{1}{[M / K]} \leqslant \frac{1}{[L / K]} .
$$

Thus if $\mu\left(S_{L / K}\right)>\frac{1}{2}$, we have $[L / K]<2$ and hence $L=K$.
3. Let L / K be an extension of number fields. Prove that L / K is galois if and only if for almost all primes $\mathfrak{p} \subset \mathcal{O}_{K}$, if there exists a prime $\mathfrak{P} \mid \mathfrak{p}$ of \mathcal{O}_{L} with $f_{\mathfrak{F} / \mathfrak{p}}=1$, then \mathfrak{p} is totally split in \mathcal{O}_{L}.

Solution: As in the lecture, let $S_{L / K}$ be the set of non-zero prime ideals \mathfrak{p} of \mathcal{O}_{K} which are totally split in \mathcal{O}_{L}. Let $P_{L / K}$ be the set of non-zero prime ideals \mathfrak{p} of \mathcal{O}_{K} for which there exists a prime $\mathfrak{P} \mid \mathfrak{p}$ of \mathcal{O}_{L} with $f_{\mathfrak{P} / \mathfrak{p}}=1$. Then we must show that L / K is galois if and only if the set $X_{L / K}:=P_{L / K} \backslash S_{L / K}$ is finite.
If L / K is galois, for all primes $\mathfrak{p} \subset \mathcal{O}_{K}$ we have $[L / K]=r_{\mathfrak{p}} e_{\mathfrak{p}} f_{\mathfrak{p}}$; hence $S_{L / K}$ is the set of \mathfrak{p} with $e_{\mathfrak{p}} f_{\mathfrak{p}}=1$, and $P_{L / K}$ is the set of \mathfrak{p} with $f_{\mathfrak{p}}=1$. Thus $X_{L / K}$ is contained in the finite set of \mathfrak{p} with $e_{\mathfrak{p}}>1$ and is therefore itself finite.
Conversely, suppose that L / K is not galois. Let M / K be its galois closure. Then M / L is a proper galois extension. By Proposition 7.5.4 the set $S_{M / L}$ of primes of \mathcal{O}_{L} which are totally split in \mathcal{O}_{M} thus has Dirichlet density $\frac{1}{[M / L]}<1$. Its complement A therefore has Dirichlet density $1-\frac{1}{[M / L]}>0$, and by Proposition 7.5 .2 so does the subset of primes in A of absolute degree 1 . Thus there exist infinitely many primes $\mathfrak{P} \subset \mathcal{O}_{K}$ of absolute degree 1 which are not totally split in \mathcal{O}_{M}. But any such \mathfrak{P} has residue degree $f_{\mathfrak{F} / \mathfrak{p}}=1$, hence the corresponding prime $\mathfrak{p}:=\mathfrak{P} \cap \mathcal{O}_{K}$ lies in $X_{L / K}$. Thus the set $X_{L / K}$ is infinite, as desired.
4. Let a be an integer that is not a third power. Let A be the set of prime numbers p such that $a \bmod (p)$ is a third power in \mathbb{F}_{p}.
(a) Prove that A and its complement are both infinite.
(b) Prove that there is no integer N such that the property $p \in A$ depends only on the residue class of p modulo (N).

Solution: By assumption the cubic polynomial $X^{3}-a$ does not have a root in \mathbb{Z}; hence by the Gauss lemma also not in \mathbb{Q}; so it is irreducible. Thus the field $K:=\mathbb{Q}(\sqrt[3]{a})$ is isomorphic to $\mathbb{Q}[X] /\left(X^{3}-a\right)$, and its ring of integers \mathcal{O}_{K} contains the subring $\mathcal{O}:=\mathbb{Z}[\sqrt[3]{a}] \cong \mathbb{Z}[X] /\left(X^{3}-a\right)$. Since both $\mathcal{O} \subset \mathcal{O}_{K}$ are free \mathbb{Z}-modules of rank 3, the index $d:=\left[\mathcal{O}_{K}: \mathcal{O}\right]$ is finite. Thus for any prime $p \nmid d$ we obtain a natural isomorphism

$$
\mathbb{F}_{p}[X] /\left(X^{3}-a\right) \cong \mathcal{O} / p \mathcal{O} \xrightarrow{\sim} \mathcal{O}_{K} / p \mathcal{O}_{K} .
$$

For any such p it follows that $p \in A$ if and only if there exists a homomorphism $\mathcal{O}_{K} / p \mathcal{O}_{K} \rightarrow \mathbb{F}_{p}$, that is, if and only if there exists a prime $\mathfrak{p} \mid p$ of \mathcal{O}_{K} with $f_{\mathfrak{p} / p}=1$.
Next, the ratio of two distinct roots of $X^{3}-a$ is a primitive third root of unity ζ_{3}, hence the galois closure of K / \mathbb{Q} is $\tilde{K}:=K L$ with the imaginary quadratic field $L:=\mathbb{Q}\left(\zeta_{3}\right)$. Moreover $\operatorname{Gal}(\tilde{K} / \mathbb{Q}) \cong S_{3}$ with the normal subgroup $\operatorname{Gal}(\tilde{K} / L) \cong A_{3}$.
(a) Since \tilde{K} / \mathbb{Q} is galois of degree 6 , by Proposition 7.5.4 the set of rational primes that are totally split in $\mathcal{O}_{\tilde{K}}$ has Dirichlet density $\frac{1}{6}$; in particular it is infinite. These primes are also totally split in the intermediate field K; hence by the above remarks almost all of them lie in A. Thus A is infinite.

On the other hand, since L / \mathbb{Q} is galois of degree 2 , the same proposition shows that the set of rational primes that split in \mathcal{O}_{L} has Dirichlet density $\frac{1}{2}$. As this set contains the set of primes that are totally split in $\mathcal{O}_{\tilde{K}}$, it follows that the set of rational primes that are totally split in \mathcal{O}_{L} but not in $\mathcal{O}_{\tilde{K}}$ has Dirichlet density $\frac{1}{2}-\frac{1}{6}=\frac{1}{3}$. In particular there are infinitely many such p. For each of these the decomposition group at any prime $\tilde{\mathfrak{p}} \subset \mathcal{O}_{\tilde{K}}$ above p is non-trivial, but acts trivially on L; hence it is equal to $\operatorname{Gal}(\tilde{K} / L) \cong A_{3}$. Since $\operatorname{Gal}(\tilde{K} / K) \cong S_{2}<S_{3}$ and $S_{3}=S_{2} \cdot A_{3}$, by exercise 1 (b) on sheet 9 it follows that there is only one prime $\mathfrak{p} \subset \mathcal{O}_{K}$ above p. As only finitely many primes are ramified in \mathcal{O}_{K}, for all the other such p we must have $f_{\mathfrak{p} / p}=3$. By the above remarks almost all of these p thus lie in the complement of A, which is therefore also infinite.
(b) If there is such an N, we can without loss of generality assume that $3 \mid N$, so that L is contained in the cyclotomic field $\hat{L}:=\mathbb{Q}\left(\mu_{N}\right)$. Then $\hat{K}:=K \hat{L}$ is galois of degree 3 over \hat{L}. Since \hat{L} / \mathbb{Q} is galois of degree $\varphi(N)$, the extension \hat{K} / \mathbb{Q} is galois of degree $3 \varphi(N)$. By the same arguments as in (a) applied to $\hat{K} / \hat{L} / \mathbb{Q}$ instead of $\tilde{K} / L / \mathbb{Q}$ we find that of the rational primes which are totally split in $\mathcal{O}_{\hat{L}}$, infinitely many lie in A and infinitely many in the complement of A. But by Example 6.5 .5 the rational primes which are totally split in $\mathcal{O}_{\hat{L}}$ are precisely those that are congruent to 1 modulo (N). Thus the congruence class $p \bmod (N)$ does not determine whether $p \in A$ or not; hence such N cannot exist.
*5. For $d, N \geqslant 1$, consider the set $P_{d, N}$ of polynomials in one variable of degree at most d whose coefficients have absolute value $\leqslant N$. Consider the subset $Q_{d, N}$ of those polynomials whose Galois group over \mathbb{Q} is the symmetric group S_{d}. Prove that $\lim _{N \rightarrow \infty} \frac{\left|Q_{d, N}\right|}{\left|P_{d, N}\right|}=1$.
Hint: Look at the factorization of polynomials modulo prime numbers.
Solution: For the first known proof see [van der Waerden, B. L.: Die Seltenheit der Gleichungen mit Affekt. (German) Math. Ann. 109 (1934), no.1, 13-16.] https://mathscinet.ams.org/mathscinet/article?mr=1512878
6. Consider an integer $m \geqslant 1$ and let $L \subset \mathbb{Q}\left(\mu_{m}\right)$ be the intermediate field corresponding to a subgroup $\Gamma<(\mathbb{Z} / m \mathbb{Z})^{\times} \cong \operatorname{Gal}\left(\mathbb{Q}\left(\mu_{m}\right) / \mathbb{Q}\right)$. Express the zeta function $\zeta_{L}(s)$ as a product of Dirichlet L-functions.
Solution: Let X_{L} be the set of homomorphisms $\chi:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$with $\chi \mid \Gamma=1$. For any $\chi \in X_{L}$ let $\chi_{\text {prim }}$ be the associated primitive Dirichlet character of modulus dividing m. We claim that $\zeta_{L}(s)$ is the product of the L-functions $L\left(\chi_{\text {prim }}, s\right)$ for all $\chi \in X_{L}$.
Since

$$
\zeta_{L}(s)=\prod_{\mathfrak{p}}\left(1-\operatorname{Nm}(\mathfrak{p})^{-s}\right)^{-1}=\prod_{p} \prod_{\mathfrak{p} \mid p}\left(1-\operatorname{Nm}(\mathfrak{p})^{-s}\right)^{-1}
$$

and

$$
L\left(\chi_{\text {prim }}, s\right)=\prod_{p}\left(1-\chi_{\text {prim }}(p) p^{-s}\right)^{-1}
$$

it suffices to prove for every fixed p that

$$
\begin{equation*}
\prod_{\mathfrak{p} \mid p}\left(1-\operatorname{Nm}(\mathfrak{p})^{-s}\right)=\prod_{\chi \in X_{L}}\left(1-\chi_{\text {prim }}(p) p^{-s}\right) \tag{*}
\end{equation*}
$$

To achieve this, recall from Proposition 6.3.4 that the prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ above p satisfy $p \mathcal{O}_{L}=\mathfrak{p}_{1}^{e} \cdots \mathfrak{p}_{r}^{e}$ with $\left[k\left(\mathfrak{p}_{i}\right) / \mathbb{F}_{p}\right]=f$ for all i and $[L: \mathbb{Q}]=r e f$. Thus $\operatorname{Nm}\left(\mathfrak{p}_{i}\right)=p^{f}$ for all i; hence the left hand side of $(*)$ is equal to $\left(1-p^{-f s}\right)^{r}$. Abbreviating $T=p^{-s}$, we are therefore reduced to showing that

$$
\begin{equation*}
\left(1-T^{f}\right)^{r}=\prod_{\chi \in X_{L}}\left(1-\chi_{\text {prim }}(p) T\right) \tag{**}
\end{equation*}
$$

Suppose first that $p \nmid m$. Then p is unramified in $\mathbb{Q}\left(\mu_{m}\right)$ and hence also in L. Thus $e=1$. Also, by Example 6.5.5 the Frobenius substitution at p for the extension $\mathbb{Q}\left(\mu_{m}\right) / \mathbb{Q}$ corresponds to the residue class \bar{p} under the isomorphism $\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{m}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / m \mathbb{Z})^{\times}$. The Frobenius substitution at p for L / \mathbb{Q} thus corresponds to the image $[\bar{p}]$ of \bar{p} in the factor $\operatorname{group} \operatorname{Gal}(L / \mathbb{Q}) \cong(\mathbb{Z} / m \mathbb{Z})^{\times} / \Gamma$. Moreover f and r are then simply the order and the index of the subgroup $\langle[\bar{p}]\rangle$.

Now observe the following elementary facts from group theory:
Lemma 1: For any finite abelian group G there are precisely $|G|$ different homomorphisms $G \rightarrow \mathbb{C}^{\times}$.

Proof: By the structure theorem for finite abelian groups there is an isomorphism $G \cong \prod_{i=1}^{r} \mathbb{Z} / e_{i} \mathbb{Z}$. Any homomorphism must map the generator of the i-th factor to an e_{i}-th root of unity, and conversely, any choice of an e_{i}-th root of unity for every i extends uniquely to a homomorphism $G \rightarrow \mathbb{C}^{\times}$. The number of homomorphisms is therefore $\prod_{i=1}^{r} e_{i}=|G|$.

Lemma 2: For any finite abelian group G and any subgroup G^{\prime}, every homomorphism $G^{\prime} \rightarrow \mathbb{C}^{\times}$possesses precisely $\left[G: G^{\prime}\right]$ different extensions to a homomorphism $G \rightarrow \mathbb{C}^{\times}$.

Proof: First note that for any two homomorphisms $G \rightarrow \mathbb{C}^{\times}$the quotient is again a homomorphism, and two homomorphisms coincide on G^{\prime} if and only if their quotient is trivial on G^{\prime}. On the other hand, applying Lemma 1 to the factor group G / G^{\prime} shows that there are precisely $\left|G / G^{\prime}\right|$ different homomorphisms $G \rightarrow \mathbb{C}^{\times}$which are trivial on G^{\prime}. Combining these statements shows that for every homomorphism $G \rightarrow \mathbb{C}^{\times}$, there are precisely $|G| /\left|G^{\prime}\right|$ homomorphisms (including the given one) which have the same restriction to G^{\prime}. Since the total number of
homomorphisms $G \rightarrow \mathbb{C}^{\times}$is $|G|$ by Lemma 1, these homomorphisms therefore decompose into $\left|G^{\prime}\right|$ sets of size $|G| /\left|G^{\prime}\right|$ with the same restriction to G^{\prime}. As the number of homomorphisms $G^{\prime} \rightarrow \mathbb{C}^{\times}$is already $\left|G^{\prime}\right|$ by Lemma 1 , it follows that each of these extends in precisely $|G| /\left|G^{\prime}\right|$ ways to a homomorphism $G \rightarrow \mathbb{C}^{\times}$.

Applying these lemmas, note that by Lemma 1 there are precisely f homomorphisms $\langle[\bar{p}]\rangle \rightarrow \mathbb{C}^{\times}$, mapping the generator $[\bar{p}]$ to the f distinct f-th roots of unity. By Lemma 2 each of these possesses precisely $[L / K] / f=r$ different extensions to a homomorphism $(\mathbb{Z} / m \mathbb{Z})^{\times} / \Gamma \rightarrow \mathbb{C}^{\times}$. But giving a homomorphism $(\mathbb{Z} / m \mathbb{Z})^{\times} / \Gamma \rightarrow \mathbb{C}^{\times}$is equivalent to giving a homomorphism $(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$which vanishes on Γ. Thus by the definition of X_{L}, for every homomorphism $\chi \in X_{L}$ the element $\chi(\bar{p}) \in \mathbb{C}^{\times}$is an f-th root of unity, and conversely, for every f-th root of unity ζ there are precisely r homomorphisms $\chi \in X_{L}$ with $\chi(\bar{p})=\zeta$. Together this shows that

$$
\prod_{\chi \in X_{L}}(1-\chi(p) T)=\prod_{\zeta \in \mu_{f}}(1-\zeta T)^{r}=\left(1-T^{f}\right)^{r}
$$

is equal to the left hand side of $(* *)$. Finally, since p is coprime to m, for every $\chi \in X_{L}$ we have $\chi(p)=\chi_{\text {prim }}(p)$. This proves the equality $(* *)$ in the case $p \nmid m$.

Now suppose that $p \mid m$ and write $m=p^{k} m^{\prime}$ with $p \nmid m^{\prime}$. Then $\mathbb{Q}\left(\mu_{m}\right)$ is generated by the linearly disjoint extensions $\mathbb{Q}\left(\mu_{p^{k}}\right)$ and $\mathbb{Q}\left(\mu_{m^{\prime}}\right)$ of \mathbb{Q}, and the induced isomorphism $\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{m}\right) / \mathbb{Q}\right) \xrightarrow{\sim} \operatorname{Gal}\left(\mathbb{Q}\left(\mu_{p^{k}}\right) / \mathbb{Q}\right) \times \operatorname{Gal}\left(\mathbb{Q}\left(\mu_{m^{\prime}}\right) / \mathbb{Q}\right)$ corresponds to the isomorphism $(\mathbb{Z} / m \mathbb{Z})^{\times} \xrightarrow{\sim}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / m^{\prime} \mathbb{Z}\right)^{\times}$from the Chinese remainder theorem. As p is totally ramified in $\mathbb{Q}\left(\mu_{p^{k}}\right)$ and unramified in $\mathbb{Q}\left(\mu_{m^{\prime}}\right)$, the inertia group above p is precisely the subgroup $\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{m}\right) / \mathbb{Q}\left(\mu_{m^{\prime}}\right)\right)$ which corresponds to the factor $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{\times} \times\{1\}$ of the latter group.
Passing to L the main theorem of Galois theory implies that the image of the inertia $\operatorname{group}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{\times} \times\{1\}$ in $(\mathbb{Z} / m \mathbb{Z})^{\times} / \Gamma$ corresponds to the subfield $L^{\prime}:=L \cap \mathbb{Q}\left(\mu_{m^{\prime}}\right)$, whose associated subgroup $\Gamma^{\prime}<\left(\mathbb{Z} / m^{\prime} \mathbb{Z}\right)^{\times}$is precisely the image of Γ. This shows that p is unramified in $\mathcal{O}_{L^{\prime}}$ and that every prime \mathfrak{p}^{\prime} of $\mathcal{O}_{L^{\prime}}$ above p is totally ramified in \mathcal{O}_{L}. Thus the primes of $\mathcal{O}_{L^{\prime}}$ above p are in bijection with those of \mathcal{O}_{L} and have the same residue field. The left hand side of $(* *)$ for $L \subset \mathbb{Q}\left(\mu_{m}\right)$ is therefore equal to that for $L^{\prime} \subset \mathbb{Q}\left(\mu_{m^{\prime}}\right)$. We have already seen that the latter is equal to

$$
\prod_{\chi \in X_{L^{\prime}}}\left(1-\chi_{\text {prim }}(p) T\right) .
$$

By the definition of X_{L} and $X_{L^{\prime}}$ this in turn is equal to

$$
\prod_{\substack{\chi \in X_{L} \\ \chi \text { trivial on }\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{\times} \times\{1\}}}\left(1-\chi_{\text {prim }}(p) T\right)
$$

Finally, for every $\chi \in X_{L}$ which is non-trivial on $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{\times} \times\{1\}$, the modulus of the associated primitive character $\chi_{\text {prim }}$ is divisible by p, which implies that $\chi_{\text {prim }}(p)=0$. Thus the two sides of $(* *)$ are also equal in the case $p \mid m$, and we are done.

