D-MATH Number Theory I HS 2023
Prof. Richard Pink .
Solutions 1

PRIME IDEALS, INTEGRAL EXTENSIONS, LOCALIZATION, NORMALIZATION

1. Let A be a ring. Prove that a proper ideal p & A is a prime ideal if and only if for
any ideals a,b < A with ab < p we have a c p or b < p.

Solution: Assume that p is a prime ideal, that is, for any a,b € A with ab € p we
have a € p or b € p. Consider ideals a,b € A with ab c p. If ad p and b ¢ p we
can choose elements a € a~p and b € b~ p. As p is prime and a,b ¢ p we then
also have ab ¢ p. But this is a contradiction to ab € ab < p. This proves the ‘only
if” part.

Conversely suppose that for any ideals a,b < A with ab < p we have a < p or
b < p. Then for any a,b € A with ab € p we have (a)(b) = (ab) = p and therefore
(a) < p or (b) < p. But this means a € p or b € p; hence p is a prime ideal. This
proves the ‘if” part.

2. Give an example of a ring extension A c B and

(a) prime ideals S ¢ < Bwithgn A=¢q n A.
(b) aprimeideal p < A for which there exists no prime ideal ¢ ¢ B with qn A = p.

Solution:

(a) For any field K the prime ideals (0) & (X) < K[X] have the same intersection
(0) with the subring K.

(b) The zero ideal is the only prime ideal of Q, and its intersection with Z is
again the zero ideal. Thus for any prime p the prime ideal (p) < Z has the
desired property.

3. Let A © B be an integral ring extension. Show that a € A is a unit in B if and
only if it is a unit in A.
Solution: If a is a unit in A, it is also a unit in B. Conversely assume that a is a
unit in B, so that ab = 1 for an element b € B. Since b is integral over A, there
then exist ai,...,a, € A such that 0" + >  a;b""* = 0. Multiplying by a" we
deduce that . .
1+ Z a‘a; = (ab)"™ + Z a‘a;(ab)"™" = 0.
i=1 i=1

Thus the element o’ := — 3" " a; € A satisfies aa’ = 1; hence a is a unit in A.
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Aliter: Assume that a is not a unit in A. Then (a) < A is a proper ideal and thus
contained in a maximal ideal p € A. Then p is in particular a prime ideal, and so
by the lying over theorem there exists a prime ideal ¢ € B with ¢ n A = p. As
a € p, this implies a € q. But since a is a unit in B, it cannot lie in the prime
ideal q; contradiction.

Let A be an integral domain and let S ¢ A~ {0} be a multiplicative subset. Prove
that the ring extension A = S71A is integral if and only if S < A*.

Solution: If S < A*, any element § € S~1A already lies in A and is therefore
integral over A. This proves the ‘if” part.

Conversely observe that any s € S satisfies s - % = 11in S7'A and is therefore a
unit in S~'A. Thus if the extension A = S7'A is integral, the above Exercise 3
implies that s is a unit in A. This proves the ‘only if’ part.

Let A be an integral domain and let S < A~ {0} be a multiplicative subset. Show
that q — g n A induces a bijection from the set of prime ideals q = S7'A to the
set of prime ideals p < A satisfying S np = @.

(Hint: Show that the inverse map is given by p — S~ lp = {% ‘ aGaEP, SE S})

Solution: We already know that the map sends prime ideals to prime ideals.
Moreover, as any element of S is a unit in S~'A and a prime ideal does not
contain any unit, the prime ideal q N A satisfies S n (q N A) = @.

Conversely for any prime ideal p < A we set
S~y = {% }aep, SES}.

One easily shows that this is an ideal of S7'A. Moreover it contains 1 if and
only if there exists s € S with 1 = £ € S~'p, that is, with s € S np. In other
words S™1p is a proper ideal if and only if S N p = @. In that case consider any
5 %’ e St A with ‘;—f € S~1p. Then we have ‘;—It’ = ¢ for some c € p and u € S. Thus
abu = stc € p. Since p is prime, this implies that one of a, b, u lies in p. Since
S np = we already know that u ¢ p, so one of a,b lies in p. This now implies
that one of %,% lies in S~'p. Together this shows that S~'p is a prime ideal of

S~1A for any prime ideal p =« A with Snp = @.

We have thus constructed well-defined maps in both directions, and it remains to
show that they are mutually inverse.

For this consider first a prime ideal ¢ = S7'A. Then for any a € q n A and any
s € S we have ¢ = % -a € q. This proves that S™'(q n A) < g. Conversely
consider any a € A and s € S with ¢ € . Then a = s- % € gn A and therefore
¢ e S'(qn A). This proves that ¢ < S~'(q n A). Together this shows that

ST gnA)=q.

Finally consider a prime ideal p — A satisfying S np = @. Then for any a € p we
have a = ¢ € S™'p n A, proving that p < S~'p n A. Conversely consider any a € p
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and s € S such that b := 2 € A. Then bs = a € p, and since p is a prime ideal
with S N p = @ we must have b € p. This proves that S~'p n A < p. Together
this shows that S™'p n A = p, as desired.

Consider an integral domain A and an element s € A ~\ {0}. Show that for the
multiplicative subset S := {s" | n = 0} we have

ST'A = A[X]/(sX —1).

Solution: Consider the evaluation homomorphism
pr A[X] = STIA, f = f(5):

Every element of S™'A has the form % for some a € A and n > 0 and is therefore
equal to ¢(aX™), so ¢ is surjective. By the fundamental homomorphism theorem
¢ thus induces an isomorphism A[X]/ker(¢) =~ S™'A. It therefore remains to
show that ker(p) = (s X —1).

For this we first observe that ¢(sX —1) = £ —1 = 0 and hence (sX —1) < ker(y).
For the reverse inclusion set K := Quot(A) and consider any f € ker(¢). Then
f(s™) = 0; hence f is divisible by X — % in K[X]. Thus there exists g € K[X]

with f = (sX —1) - g. Writing out g = >},_, ;X" with g; € K we thus have

f=(06X-1)-9 = Z(ng’—l _gi)Xi — 90

=1

with all coefficients in A. Thus we find that g, € A, and since sg;_1 — ¢g; € A and
s € A we deduce by induction that g; € A for all i > 0. Thus g € A[X], and so f
lies in the ideal (sX — 1). We therefore have ker(p) < (sX — 1), as desired.

Let L := k(t) be the field of rational functions in one variable over a field k, and
let K := k(s) be the subfield generated over k by s := ¢ + ¢t~'. Determine the
integral closure B of A := k[s] in L.

Solution: The field extension L/K has degree 2 with the generator ¢, and it is galois
with the non-trivial galois automorphism ¢ — ¢~!. Also the equation t>—st+1 = 0
shows that ¢t € B. Thus we also have t~! € B and therefore k[t*!] = B. Since
k[s] = k[t + t7'] is contained in k[t*!], and L is the quotient field of k[t*'], it
follows that B is the normalization of k[t*!]. Now observe that k[t] is a factorial
ring and therefore normal. As a localization of k[t] the ring k[t*'] is thus normal
as well. Therefore B = k[t*!], and we are done.

Aliter: The field extension L/K has degree 2 with the basis 1,¢, and it is galois
with the non-trivial galois automorphism ¢ — ¢~!. Also the equation t>—st+1 = 0
shows that t € B and hence A + At ¢ B.



Consider an arbitrary element f = g + ht € L with g, h € K. By Proposition 1.5.2
of the lecture this element lies in B if and only if its minimal polynomial over
K has coefficients in A. If h = 0, this minimal polynomial is X — g, hence the
condition is f = g € A; so we do not get any new elements. If h # 0, the minimal
polynomial is (X — f)(X — f) = X2 — (f + /)X + ff with f = g + ht~'. Thus
f € B if and only if the elements

f+f = (g+ht)+(g+ht™t) = 29+ hs,

ff = (g+ht)-(g+ht™") = ¢>+ghs+h? (%)

both lie in A.

Case 1: Suppose that k has characteristic 2. Then the first condition is simply
hs € A. Multiplying the second equation by s? we find that another necessary
condition is that w := (gs)? + (gs)hs? + h%s? € A. In that case gs is a zero of the
monic polynomial X? + Xhs? + h%s*> —w € A[X]. Thus gs € K must be integral
over A. As A = k[s] is a unique factorization domain, this means that gs € A.
Together this shows that a necessary condition is h, g € A%.

Now recall that we already know that g + ht € A for all g, h € A. Thus it suffices
to test the conditions for suitable representatives of all residue classes in A2/A.

Since A = k[s] we can therefore reduce ourselves to the case that g = ¢ and 3 = g
with «, § € k. In that case the second element in (x) is

ff = P+ghs+h® = & 484 &

Comparing coefficients this lies in A if and only if a8 = o? + 3% = 0. But this is
equivalent to a = = 0. This shows that B = A + At.

Case 2: Suppose that k has characteristic # 2. Then 2 € £, and by adding to f a
suitable element of A we can achieve that 2g+hs = 0. As the integrality condition
does not change under this modification, it suffices to continue the computation
under the assumption 2¢g + hs = 0. Multiplying the second equation in (x) by
4 € k™ the condition is then equivalent to

49 + 4ghs + 4h* = h%s* — 2hshs +4h* = (4 —s*)h* e A.

Now observe that 2 # —2 in k implies that 4 — s> = (2 — 5)(2 + s) is the product
of two inequivalent primes in A = k[s]. By unique factorization it thus follows

that (4 — s®)h? € A if and only h € A. Thus again we have found no new elements
of B; hence B = A + At.

Finally, recall that B is already a subring. In both cases we therefore find that
B = A+ At = A[t] = k[t+1,¢] = k[t*'].



