
D-MATH Number Theory I HS 2023
Prof. Richard Pink

Solutions 1

prime ideals, integral extensions, localization, normalization

1. Let A be a ring. Prove that a proper ideal p Ř A is a prime ideal if and only if for
any ideals a, b Ă A with ab Ă p we have a Ă p or b Ă p.

Solution: Assume that p is a prime ideal, that is, for any a, b P A with ab P p we
have a P p or b P p. Consider ideals a, b Ă A with ab Ă p. If a Ć p and b Ć p we
can choose elements a P a ∖ p and b P b ∖ p. As p is prime and a, b R p we then
also have ab R p. But this is a contradiction to ab P ab Ă p. This proves the ‘only
if’ part.

Conversely suppose that for any ideals a, b Ă A with ab Ă p we have a Ă p or
b Ă p. Then for any a, b P A with ab P p we have paqpbq “ pabq Ă p and therefore
paq Ă p or pbq Ă p. But this means a P p or b P p; hence p is a prime ideal. This
proves the ‘if’ part.

2. Give an example of a ring extension A Ă B and

(a) prime ideals q Ř q1 Ă B with q X A “ q1 X A.

(b) a prime ideal p Ă A for which there exists no prime ideal q Ă B with qXA “ p.

Solution:

(a) For any fieldK the prime ideals p0q Ř pXq Ă KrXs have the same intersection
p0q with the subring K.

(b) The zero ideal is the only prime ideal of Q, and its intersection with Z is
again the zero ideal. Thus for any prime p the prime ideal ppq Ă Z has the
desired property.

3. Let A Ă B be an integral ring extension. Show that a P A is a unit in B if and
only if it is a unit in A.

Solution: If a is a unit in A, it is also a unit in B. Conversely assume that a is a
unit in B, so that ab “ 1 for an element b P B. Since b is integral over A, there
then exist a1, . . . , an P A such that bn `

řn
i“1 aib

n´i “ 0. Multiplying by an we
deduce that

1 `

n
ÿ

i“1

aiai “ pabqn `

n
ÿ

i“1

aiaipabq
n´i

“ 0.

Thus the element a1 :“ ´
řn

i“1 a
i´1ai P A satisfies aa1 “ 1; hence a is a unit in A.
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Aliter: Assume that a is not a unit in A. Then paq Ă A is a proper ideal and thus
contained in a maximal ideal p Ă A. Then p is in particular a prime ideal, and so
by the lying over theorem there exists a prime ideal q Ă B with q X A “ p. As
a P p, this implies a P q. But since a is a unit in B, it cannot lie in the prime
ideal q; contradiction.

4. Let A be an integral domain and let S Ă A∖t0u be a multiplicative subset. Prove
that the ring extension A Ă S´1A is integral if and only if S Ă Aˆ.

Solution: If S Ă Aˆ, any element a
s

P S´1A already lies in A and is therefore
integral over A. This proves the ‘if’ part.

Conversely observe that any s P S satisfies s ¨ 1
s

“ 1 in S´1A and is therefore a
unit in S´1A. Thus if the extension A Ă S´1A is integral, the above Exercise 3
implies that s is a unit in A. This proves the ‘only if’ part.

*5. Let A be an integral domain and let S Ă A∖ t0u be a multiplicative subset. Show
that q ÞÑ q X A induces a bijection from the set of prime ideals q Ă S´1A to the
set of prime ideals p Ă A satisfying S X p “ ∅.

(Hint: Show that the inverse map is given by p ÞÑ S´1p :“
␣

a
s

ˇ

ˇ a P p, s P S
(

.)

Solution: We already know that the map sends prime ideals to prime ideals.
Moreover, as any element of S is a unit in S´1A and a prime ideal does not
contain any unit, the prime ideal q X A satisfies S X pq X Aq “ ∅.

Conversely for any prime ideal p Ă A we set

S´1p :“
␣

a
s

ˇ

ˇ a P p, s P S
(

.

One easily shows that this is an ideal of S´1A. Moreover it contains 1 if and
only if there exists s P S with 1 “ s

s
P S´1p, that is, with s P S X p. In other

words S´1p is a proper ideal if and only if S X p “ ∅. In that case consider any
a
s
, b
t

P S´1A with ab
st

P S´1p. Then we have ab
st

“ c
u
for some c P p and u P S. Thus

abu “ stc P p. Since p is prime, this implies that one of a, b, u lies in p. Since
S X p “ ∅ we already know that u R p, so one of a, b lies in p. This now implies
that one of a

s
, b
t
lies in S´1p. Together this shows that S´1p is a prime ideal of

S´1A for any prime ideal p Ă A with S X p “ ∅.

We have thus constructed well-defined maps in both directions, and it remains to
show that they are mutually inverse.

For this consider first a prime ideal q Ă S´1A. Then for any a P q X A and any
s P S we have a

s
“ 1

s
¨ a P q. This proves that S´1pq X Aq Ă q. Conversely

consider any a P A and s P S with a
s

P q. Then a “ s ¨ a
s

P q X A and therefore
a
s

P S´1pq X Aq. This proves that q Ă S´1pq X Aq. Together this shows that
S´1pq X Aq “ q.

Finally consider a prime ideal p Ă A satisfying S X p “ ∅. Then for any a P p we
have a “ a

1
P S´1pXA, proving that p Ă S´1pXA. Conversely consider any a P p
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and s P S such that b :“ a
s

P A. Then bs “ a P p, and since p is a prime ideal
with S X p “ ∅ we must have b P p. This proves that S´1p X A Ă p. Together
this shows that S´1p X A “ p, as desired.

*6. Consider an integral domain A and an element s P A ∖ t0u. Show that for the
multiplicative subset S :“ tsn | n ě 0u we have

S´1A – ArXs{psX ´ 1q.

Solution: Consider the evaluation homomorphism

φ : ArXs Ñ S´1A, f ÞÑ fp1
s
q.

Every element of S´1A has the form a
sn

for some a P A and n ě 0 and is therefore
equal to φpaXnq, so φ is surjective. By the fundamental homomorphism theorem
φ thus induces an isomorphism ArXs{ kerpφq – S´1A. It therefore remains to
show that kerpφq “ psX ´ 1q.

For this we first observe that φpsX ´1q “ s
s

´1 “ 0 and hence psX ´1q Ă kerpφq.
For the reverse inclusion set K :“ QuotpAq and consider any f P kerpφq. Then
fps´1q “ 0; hence f is divisible by X ´ 1

s
in KrXs. Thus there exists g P KrXs

with f “ psX ´ 1q ¨ g. Writing out g “
ř

iě0 giX
i with gi P K we thus have

f “ psX ´ 1q ¨ g “
ÿ

iě1

psgi´1 ´ giqX
i

´ g0

with all coefficients in A. Thus we find that g0 P A, and since sgi´1 ´ gi P A and
s P A we deduce by induction that gi P A for all i ě 0. Thus g P ArXs, and so f
lies in the ideal psX ´ 1q. We therefore have kerpφq Ă psX ´ 1q, as desired.

7. Let L :“ kptq be the field of rational functions in one variable over a field k, and
let K :“ kpsq be the subfield generated over k by s :“ t ` t´1. Determine the
integral closure B of A :“ krss in L.

Solution: The field extension L{K has degree 2 with the generator t, and it is galois
with the non-trivial galois automorphism t ÞÑ t´1. Also the equation t2´st`1 “ 0
shows that t P B. Thus we also have t´1 P B and therefore krt˘1s Ă B. Since
krss “ krt ` t´1s is contained in krt˘1s, and L is the quotient field of krt˘1s, it
follows that B is the normalization of krt˘1s. Now observe that krts is a factorial
ring and therefore normal. As a localization of krts the ring krt˘1s is thus normal
as well. Therefore B “ krt˘1s, and we are done.

Aliter: The field extension L{K has degree 2 with the basis 1, t, and it is galois
with the non-trivial galois automorphism t ÞÑ t´1. Also the equation t2´st`1 “ 0
shows that t P B and hence A ` At Ă B.
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Consider an arbitrary element f “ g ` ht P L with g, h P K. By Proposition 1.5.2
of the lecture this element lies in B if and only if its minimal polynomial over
K has coefficients in A. If h “ 0, this minimal polynomial is X ´ g, hence the
condition is f “ g P A; so we do not get any new elements. If h ‰ 0, the minimal
polynomial is pX ´ fqpX ´ f̄q “ X2 ´ pf ` f̄qX ` ff̄ with f̄ “ g ` ht´1. Thus
f P B if and only if the elements

f ` f̄ “ pg ` htq ` pg ` ht´1q “ 2g ` hs,

f f̄ “ pg ` htq ¨ pg ` ht´1q “ g2 ` ghs ` h2
p˚q

both lie in A.

Case 1: Suppose that k has characteristic 2. Then the first condition is simply
hs P A. Multiplying the second equation by s2 we find that another necessary
condition is that w :“ pgsq2 ` pgsqhs2 ` h2s2 P A. In that case gs is a zero of the
monic polynomial X2 ` Xhs2 ` h2s2 ´ w P ArXs. Thus gs P K must be integral
over A. As A “ krss is a unique factorization domain, this means that gs P A.
Together this shows that a necessary condition is h, g P A1

s
.

Now recall that we already know that g ` ht P A for all g, h P A. Thus it suffices
to test the conditions for suitable representatives of all residue classes in A1

s
{A.

Since A “ krss we can therefore reduce ourselves to the case that g “ α
s
and β “

β
s

with α, β P k. In that case the second element in p˚q is

ff̄ “ g2 ` ghs ` h2
“ α2

s2
`

αβ
s

`
β2

s2
.

Comparing coefficients this lies in A if and only if αβ “ α2 ` β2 “ 0. But this is
equivalent to α “ β “ 0. This shows that B “ A ` At.

Case 2: Suppose that k has characteristic ‰ 2. Then 2 P kˆ, and by adding to f a
suitable element of A we can achieve that 2g`hs “ 0. As the integrality condition
does not change under this modification, it suffices to continue the computation
under the assumption 2g ` hs “ 0. Multiplying the second equation in p˚q by
4 P kˆ the condition is then equivalent to

4g2 ` 4ghs ` 4h2
“ h2s2 ´ 2hshs ` 4h2

“ p4 ´ s2qh2
P A.

Now observe that 2 ‰ ´2 in k implies that 4 ´ s2 “ p2 ´ sqp2 ` sq is the product
of two inequivalent primes in A “ krss. By unique factorization it thus follows
that p4´ s2qh2 P A if and only h P A. Thus again we have found no new elements
of B; hence B “ A ` At.

Finally, recall that B is already a subring. In both cases we therefore find that

B “ A ` At “ Arts “ krt ` 1
t
, ts “ krt˘1

s.
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