D-MATH
Prof. Richard Pink

Solutions 1

PRIME IDEALS, INTEGRAL EXTENSIONS, LOCALIZATION, NORMALIZATION

1. Let A be a ring. Prove that a proper ideal $\mathfrak{p} \varsubsetneqq A$ is a prime ideal if and only if for any ideals $\mathfrak{a}, \mathfrak{b} \subset A$ with $\mathfrak{a b} \subset \mathfrak{p}$ we have $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.
Solution: Assume that \mathfrak{p} is a prime ideal, that is, for any $a, b \in A$ with $a b \in \mathfrak{p}$ we have $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. Consider ideals $\mathfrak{a}, \mathfrak{b} \subset A$ with $\mathfrak{a b} \subset \mathfrak{p}$. If $\mathfrak{a} \notin \mathfrak{p}$ and $\mathfrak{b} \notin \mathfrak{p}$ we can choose elements $a \in \mathfrak{a} \backslash \mathfrak{p}$ and $b \in \mathfrak{b} \backslash \mathfrak{p}$. As \mathfrak{p} is prime and $a, b \notin \mathfrak{p}$ we then also have $a b \notin \mathfrak{p}$. But this is a contradiction to $a b \in \mathfrak{a b} \subset \mathfrak{p}$. This proves the 'only if' part.

Conversely suppose that for any ideals $\mathfrak{a}, \mathfrak{b} \subset A$ with $\mathfrak{a b} \subset \mathfrak{p}$ we have $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$. Then for any $a, b \in A$ with $a b \in \mathfrak{p}$ we have $(a)(b)=(a b) \subset \mathfrak{p}$ and therefore $(a) \subset \mathfrak{p}$ or $(b) \subset \mathfrak{p}$. But this means $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$; hence \mathfrak{p} is a prime ideal. This proves the 'if' part.
2. Give an example of a ring extension $A \subset B$ and
(a) prime ideals $\mathfrak{q} \varsubsetneqq \mathfrak{q}^{\prime} \subset B$ with $\mathfrak{q} \cap A=\mathfrak{q}^{\prime} \cap A$.
(b) a prime ideal $\mathfrak{p} \subset A$ for which there exists no prime ideal $\mathfrak{q} \subset B$ with $\mathfrak{q} \cap A=\mathfrak{p}$.

Solution:

(a) For any field K the prime ideals $(0) \varsubsetneqq(X) \subset K[X]$ have the same intersection (0) with the subring K.
(b) The zero ideal is the only prime ideal of \mathbb{Q}, and its intersection with \mathbb{Z} is again the zero ideal. Thus for any prime p the prime ideal $(p) \subset \mathbb{Z}$ has the desired property.
3. Let $A \subset B$ be an integral ring extension. Show that $a \in A$ is a unit in B if and only if it is a unit in A.

Solution: If a is a unit in A, it is also a unit in B. Conversely assume that a is a unit in B, so that $a b=1$ for an element $b \in B$. Since b is integral over A, there then exist $a_{1}, \ldots, a_{n} \in A$ such that $b^{n}+\sum_{i=1}^{n} a_{i} b^{n-i}=0$. Multiplying by a^{n} we deduce that

$$
1+\sum_{i=1}^{n} a^{i} a_{i}=(a b)^{n}+\sum_{i=1}^{n} a^{i} a_{i}(a b)^{n-i}=0
$$

Thus the element $a^{\prime}:=-\sum_{i=1}^{n} a^{i-1} a_{i} \in A$ satisfies $a a^{\prime}=1$; hence a is a unit in A.

Aliter: Assume that a is not a unit in A. Then $(a) \subset A$ is a proper ideal and thus contained in a maximal ideal $\mathfrak{p} \subset A$. Then \mathfrak{p} is in particular a prime ideal, and so by the lying over theorem there exists a prime ideal $\mathfrak{q} \subset B$ with $\mathfrak{q} \cap A=\mathfrak{p}$. As $a \in \mathfrak{p}$, this implies $a \in \mathfrak{q}$. But since a is a unit in B, it cannot lie in the prime ideal \mathfrak{q}; contradiction.
4. Let A be an integral domain and let $S \subset A \backslash\{0\}$ be a multiplicative subset. Prove that the ring extension $A \subset S^{-1} A$ is integral if and only if $S \subset A^{\times}$.
Solution: If $S \subset A^{\times}$, any element $\frac{a}{s} \in S^{-1} A$ already lies in A and is therefore integral over A. This proves the 'if' part.
Conversely observe that any $s \in S$ satisfies $s \cdot \frac{1}{s}=1$ in $S^{-1} A$ and is therefore a unit in $S^{-1} A$. Thus if the extension $A \subset S^{-1} A$ is integral, the above Exercise 3 implies that s is a unit in A. This proves the 'only if' part.
*5. Let A be an integral domain and let $S \subset A \backslash\{0\}$ be a multiplicative subset. Show that $\mathfrak{q} \mapsto \mathfrak{q} \cap A$ induces a bijection from the set of prime ideals $\mathfrak{q} \subset S^{-1} A$ to the set of prime ideals $\mathfrak{p} \subset A$ satisfying $S \cap \mathfrak{p}=\varnothing$.
(Hint: Show that the inverse map is given by $\mathfrak{p} \mapsto S^{-1} \mathfrak{p}:=\left\{\left.\frac{a}{s} \right\rvert\, a \in \mathfrak{p}, s \in S\right\}$.)
Solution: We already know that the map sends prime ideals to prime ideals. Moreover, as any element of S is a unit in $S^{-1} A$ and a prime ideal does not contain any unit, the prime ideal $\mathfrak{q} \cap A$ satisfies $S \cap(\mathfrak{q} \cap A)=\varnothing$.
Conversely for any prime ideal $\mathfrak{p} \subset A$ we set

$$
S^{-1} \mathfrak{p}:=\left\{\left.\frac{a}{s} \right\rvert\, a \in \mathfrak{p}, s \in S\right\}
$$

One easily shows that this is an ideal of $S^{-1} A$. Moreover it contains 1 if and only if there exists $s \in S$ with $1=\frac{s}{s} \in S^{-1} \mathfrak{p}$, that is, with $s \in S \cap \mathfrak{p}$. In other words $S^{-1} \mathfrak{p}$ is a proper ideal if and only if $S \cap \mathfrak{p}=\varnothing$. In that case consider any $\frac{a}{s}, \frac{b}{t} \in S^{-1} A$ with $\frac{a b}{s t} \in S^{-1} \mathfrak{p}$. Then we have $\frac{a b}{s t}=\frac{c}{u}$ for some $c \in \mathfrak{p}$ and $u \in S$. Thus $a b u=s t c \in \mathfrak{p}$. Since \mathfrak{p} is prime, this implies that one of a, b, u lies in \mathfrak{p}. Since $S \cap \mathfrak{p}=\varnothing$ we already know that $u \notin \mathfrak{p}$, so one of a, b lies in \mathfrak{p}. This now implies that one of $\frac{a}{s}, \frac{b}{t}$ lies in $S^{-1} \mathfrak{p}$. Together this shows that $S^{-1} \mathfrak{p}$ is a prime ideal of $S^{-1} A$ for any prime ideal $\mathfrak{p} \subset A$ with $S \cap \mathfrak{p}=\varnothing$.
We have thus constructed well-defined maps in both directions, and it remains to show that they are mutually inverse.
For this consider first a prime ideal $\mathfrak{q} \subset S^{-1} A$. Then for any $a \in \mathfrak{q} \cap A$ and any $s \in S$ we have $\frac{a}{s}=\frac{1}{s} \cdot a \in \mathfrak{q}$. This proves that $S^{-1}(\mathfrak{q} \cap A) \subset \mathfrak{q}$. Conversely consider any $a \in A$ and $s \in S$ with $\frac{a}{s} \in \mathfrak{q}$. Then $a=s \cdot \frac{a}{s} \in \mathfrak{q} \cap A$ and therefore $\frac{a}{s} \in S^{-1}(\mathfrak{q} \cap A)$. This proves that $\mathfrak{q} \subset S^{-1}(\mathfrak{q} \cap A)$. Together this shows that $S^{-1}(\mathfrak{q} \cap A)=\mathfrak{q}$.
Finally consider a prime ideal $\mathfrak{p} \subset A$ satisfying $S \cap \mathfrak{p}=\varnothing$. Then for any $a \in \mathfrak{p}$ we have $a=\frac{a}{1} \in S^{-1} \mathfrak{p} \cap A$, proving that $\mathfrak{p} \subset S^{-1} \mathfrak{p} \cap A$. Conversely consider any $a \in \mathfrak{p}$
and $s \in S$ such that $b:=\frac{a}{s} \in A$. Then $b s=a \in \mathfrak{p}$, and since \mathfrak{p} is a prime ideal with $S \cap \mathfrak{p}=\varnothing$ we must have $b \in \mathfrak{p}$. This proves that $S^{-1} \mathfrak{p} \cap A \subset \mathfrak{p}$. Together this shows that $S^{-1} \mathfrak{p} \cap A=\mathfrak{p}$, as desired.
*6. Consider an integral domain A and an element $s \in A \backslash\{0\}$. Show that for the multiplicative subset $S:=\left\{s^{n} \mid n \geqslant 0\right\}$ we have

$$
S^{-1} A \cong A[X] /(s X-1)
$$

Solution: Consider the evaluation homomorphism

$$
\varphi: A[X] \rightarrow S^{-1} A, \quad f \mapsto f\left(\frac{1}{s}\right) .
$$

Every element of $S^{-1} A$ has the form $\frac{a}{s^{n}}$ for some $a \in A$ and $n \geqslant 0$ and is therefore equal to $\varphi\left(a X^{n}\right)$, so φ is surjective. By the fundamental homomorphism theorem φ thus induces an isomorphism $A[X] / \operatorname{ker}(\varphi) \cong S^{-1} A$. It therefore remains to show that $\operatorname{ker}(\varphi)=(s X-1)$.
For this we first observe that $\varphi(s X-1)=\frac{s}{s}-1=0$ and hence $(s X-1) \subset \operatorname{ker}(\varphi)$. For the reverse inclusion set $K:=\operatorname{Quot}(A)$ and consider any $f \in \operatorname{ker}(\varphi)$. Then $f\left(s^{-1}\right)=0$; hence f is divisible by $X-\frac{1}{s}$ in $K[X]$. Thus there exists $g \in K[X]$ with $f=(s X-1) \cdot g$. Writing out $g=\sum_{i \geqslant 0} g_{i} X^{i}$ with $g_{i} \in K$ we thus have

$$
f=(s X-1) \cdot g=\sum_{i \geqslant 1}\left(s g_{i-1}-g_{i}\right) X^{i}-g_{0}
$$

with all coefficients in A. Thus we find that $g_{0} \in A$, and since $s g_{i-1}-g_{i} \in A$ and $s \in A$ we deduce by induction that $g_{i} \in A$ for all $i \geqslant 0$. Thus $g \in A[X]$, and so f lies in the ideal $(s X-1)$. We therefore have $\operatorname{ker}(\varphi) \subset(s X-1)$, as desired.
7. Let $L:=k(t)$ be the field of rational functions in one variable over a field k, and let $K:=k(s)$ be the subfield generated over k by $s:=t+t^{-1}$. Determine the integral closure B of $A:=k[s]$ in L.
Solution: The field extension L / K has degree 2 with the generator t, and it is galois with the non-trivial galois automorphism $t \mapsto t^{-1}$. Also the equation $t^{2}-s t+1=0$ shows that $t \in B$. Thus we also have $t^{-1} \in B$ and therefore $k\left[t^{ \pm 1}\right] \subset B$. Since $k[s]=k\left[t+t^{-1}\right]$ is contained in $k\left[t^{ \pm 1}\right]$, and L is the quotient field of $k\left[t^{ \pm 1}\right]$, it follows that B is the normalization of $k\left[t^{ \pm 1}\right]$. Now observe that $k[t]$ is a factorial ring and therefore normal. As a localization of $k[t]$ the ring $k\left[t^{ \pm 1}\right]$ is thus normal as well. Therefore $B=k\left[t^{ \pm 1}\right]$, and we are done.

Aliter: The field extension L / K has degree 2 with the basis $1, t$, and it is galois with the non-trivial galois automorphism $t \mapsto t^{-1}$. Also the equation $t^{2}-s t+1=0$ shows that $t \in B$ and hence $A+A t \subset B$.

Consider an arbitrary element $f=g+h t \in L$ with $g, h \in K$. By Proposition 1.5.2 of the lecture this element lies in B if and only if its minimal polynomial over K has coefficients in A. If $h=0$, this minimal polynomial is $X-g$, hence the condition is $f=g \in A$; so we do not get any new elements. If $h \neq 0$, the minimal polynomial is $(X-f)(X-\bar{f})=X^{2}-(f+\bar{f}) X+f \bar{f}$ with $\bar{f}=g+h t^{-1}$. Thus $f \in B$ if and only if the elements

$$
\begin{align*}
f+\bar{f} & =(g+h t)+\left(g+h t^{-1}\right)
\end{align*}=2 g+h s, ~=(g+h t) \cdot\left(g+h t^{-1}\right)=g^{2}+g h s+h^{2}, ~ l
$$

both lie in A.
Case 1: Suppose that k has characteristic 2 . Then the first condition is simply $h s \in A$. Multiplying the second equation by s^{2} we find that another necessary condition is that $w:=(g s)^{2}+(g s) h s^{2}+h^{2} s^{2} \in A$. In that case $g s$ is a zero of the monic polynomial $X^{2}+X h s^{2}+h^{2} s^{2}-w \in A[X]$. Thus $g s \in K$ must be integral over A. As $A=k[s]$ is a unique factorization domain, this means that $g s \in A$. Together this shows that a necessary condition is $h, g \in A \frac{1}{s}$.
Now recall that we already know that $g+h t \in A$ for all $g, h \in A$. Thus it suffices to test the conditions for suitable representatives of all residue classes in $A \frac{1}{s} / A$. Since $A=k[s]$ we can therefore reduce ourselves to the case that $g=\frac{\alpha}{s}$ and $\beta=\frac{\beta}{s}$ with $\alpha, \beta \in k$. In that case the second element in (*) is

$$
f \bar{f}=g^{2}+g h s+h^{2}=\frac{\alpha^{2}}{s^{2}}+\frac{\alpha \beta}{s}+\frac{\beta^{2}}{s^{2}} .
$$

Comparing coefficients this lies in A if and only if $\alpha \beta=\alpha^{2}+\beta^{2}=0$. But this is equivalent to $\alpha=\beta=0$. This shows that $B=A+A t$.

Case 2: Suppose that k has characteristic $\neq 2$. Then $2 \in k^{\times}$, and by adding to f a suitable element of A we can achieve that $2 g+h s=0$. As the integrality condition does not change under this modification, it suffices to continue the computation under the assumption $2 g+h s=0$. Multiplying the second equation in (*) by $4 \in k^{\times}$the condition is then equivalent to

$$
4 g^{2}+4 g h s+4 h^{2}=h^{2} s^{2}-2 h s h s+4 h^{2}=\left(4-s^{2}\right) h^{2} \in A .
$$

Now observe that $2 \neq-2$ in k implies that $4-s^{2}=(2-s)(2+s)$ is the product of two inequivalent primes in $A=k[s]$. By unique factorization it thus follows that $\left(4-s^{2}\right) h^{2} \in A$ if and only $h \in A$. Thus again we have found no new elements of B; hence $B=A+A t$.

Finally, recall that B is already a subring. In both cases we therefore find that

$$
B=A+A t=A[t]=k\left[t+\frac{1}{t}, t\right]=k\left[t^{ \pm 1}\right] .
$$

