Number Theory I

Exercise sheet 3

DEDEKIND RINGS, FRACTIONAL IDEALS, LATTICES

- 1. Show that for all fractional ideals \mathfrak{a} of a Dedekind ring A we have $\mathfrak{a}^{-1}\mathfrak{a} = (1)$.
- 2. (a) Show that for all fractional ideals \mathfrak{a} , \mathfrak{b} , \mathfrak{c} of a Dedekind ring A we have $(\mathfrak{a} + \mathfrak{b})\mathfrak{c} = \mathfrak{a}\mathfrak{c} + \mathfrak{b}\mathfrak{c}$ and $(\mathfrak{a} \cap \mathfrak{b})\mathfrak{c} = \mathfrak{a}\mathfrak{c} \cap \mathfrak{b}\mathfrak{c}$.
 - (b) Do the same formulas hold for ideals of an arbitrary ring?
- 3. Consider non-zero ideals $\mathfrak{a}, \mathfrak{b}$ of a Dedekind ring A with the prime factorizations $\mathfrak{a} = \prod_{i=1}^{n} \mathfrak{p}_{i}^{\mu_{i}}$ and $\mathfrak{b} = \prod_{i=1}^{n} \mathfrak{p}_{i}^{\nu_{i}}$ for distinct maximal ideals \mathfrak{p}_{i} and exponents $\mu_{i}, \nu_{i} \geq 0$.
 - (a) Prove that

- (b) Explain which of these operations can be viewed as the greatest common divisor, respectively the least common multiple, of ideals.
- (c) Deduce Proposition 1.11.5.
- 4. Prove that a Dedekind ring is factorial if and only if it is a principal ideal domain.
- 5. Consider the number field $K := \mathbb{Q}(\sqrt{-5})$ and its ring of integers $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$.
 - (a) Show that (3) = $\mathfrak{p}\mathfrak{p}'$ with prime ideals $\mathfrak{p} := (3, 1+\sqrt{-5})$ and $\mathfrak{p}' := (3, 1-\sqrt{-5})$.
 - (b) Determine the structure of the ring $\mathcal{O}_K/(3)$.
 - (c) Determine the inverse of p as a fractional ideal.
 - (d) Which powers of the ideal p are principal?
 - (e) Compute the factorization of (2) into prime ideals.
 - (f) Compute the factorization of (5) into prime ideals.
 - (g) Compute the factorization of (11) into prime ideals.
- 6. Show that a subgroup Γ of a finite-dimensional \mathbb{R} -vector space V is a complete lattice if and only if Γ is discrete and V/Γ is compact.