Exercise sheet 4

Lattices, Minkowski Theory, Quadratic Extensions

1. (Minkowski's theorem on linear forms) Let

$$
L_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, n
$$

be real linear forms such that $\operatorname{det}\left(a_{i j}\right) \neq 0$, and let c_{1}, \ldots, c_{n} be positive real numbers such that $c_{1} \cdots c_{n}>\left|\operatorname{det}\left(a_{i j}\right)\right|$. Show that there exist integers $m_{1}, \ldots, m_{n} \in \mathbb{Z}$, not all zero, such that for all $i \in\{1, \ldots, n\}$

$$
\left|L_{i}\left(m_{1}, \ldots, m_{n}\right)\right|<c_{i}
$$

Hint: Use Minkowski's lattice point theorem.
2. Consider a line $\ell:=\mathbb{R} \cdot(1, \alpha)$ in the plane \mathbb{R}^{2} with an irrational slope $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Show that for any $\varepsilon>0$, there are infinitely many lattice points $P \in \mathbb{Z}^{2}$ of distance $d(P, \ell)<\varepsilon$.
3. (a) Show that the polynomial $f:=X^{3}+X+1$ is irreducible over \mathbb{Q}.

Consider the cubic number field $K:=\mathbb{Q}(\theta)$ with $f(\theta)=0$.
(b) Determine the ring of integers \mathcal{O}_{K} and its discriminant.
(c) Determine the number of real resp. non-real complex embeddings of K.
4. Let \mathbb{F}_{q} be a finite field with q elements and assume that q is odd. Consider the polynomial ring $A:=\mathbb{F}_{q}[t]$ and its quotient field $K:=\mathbb{F}_{q}(t)$.
(a) Show that every quadratic extension of K has the form $L=K(\sqrt{f})$ for a squarefree polynomial $f \in A$.
(b) Determine the integral closure B of A in L.
*5. Show Minkowski's second theorem about successive minima: Let Γ be a complete lattice in a euclidean vector space $(V,\langle\rangle$,$) of finite dimension n$. The successive minima $\lambda_{1}, \ldots, \lambda_{n}$ of Γ are defined iteratively by choosing for any $1 \leqslant i \leqslant n$ an element $\gamma_{i} \in \Gamma \backslash \bigoplus_{j=1}^{i-1} \mathbb{R} \gamma_{j}$ of minimal length $\lambda_{i}:=\|\gamma\|$. Then

$$
\frac{2^{n}}{n!} \operatorname{vol}(V / \Gamma) \leqslant \lambda_{1} \cdots \lambda_{n} \cdot \operatorname{vol}(B) \leqslant 2^{n} \operatorname{vol}(V / \Gamma)
$$

where B is the closed ball of radius 1 .
*6. Show Lagrange's four square theorem: Every nonnegative integer n can be written as the sum of four squares.
(a) Show that if m and n are sums of four squares, then so is $m n$.

Hint: Show that the reduced norm on the ring of quaternions $\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k$ that is given by $\|a+b i+c j+d k\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$ is multiplicative.
(b) Reduce the theorem to the case that n is a prime number p.
(c) Find integers α, β such that $\alpha^{2}+\beta^{2} \equiv-1 \bmod p$.

Hint: Consider the intersection of the sets
$S:=\left\{\alpha^{2} \bmod p \left\lvert\, 0 \leqslant \alpha<\frac{p}{2}\right.\right\} \quad$ and $\quad S^{\prime}:=\left\{-1-\beta^{2} \bmod p \left\lvert\, 0 \leqslant \beta<\frac{p}{2}\right.\right\}$.
(d) For any such α, β show that
$\Gamma:=\left\{a=\left(a_{1}, \ldots, a_{4}\right) \in \mathbb{Z}^{4} \mid a_{1} \equiv \alpha a_{3}+\beta a_{4} \bmod (p), a_{2} \equiv \beta a_{3}-\alpha a_{4} \bmod (p)\right\}$ contains a nonzero point a in the open ball of radius $\sqrt{2 p}$ in \mathbb{R}^{4}.
(e) Show that $\|a\|^{2}=p$ and conclude.

