Exercise sheet 5

Cyclotomic Fields, Legendre Symbol

1. The Möbius function $\mu: \mathbb{Z}^{\geqslant 1} \rightarrow \mathbb{Z}$ is defined by

$$
\mu(n):=\left\{\begin{array}{cl}
(-1)^{k} & \text { if } n \text { is the product of } k \geqslant 0 \text { distinct primes, } \\
0 & \text { otherwise. }
\end{array}\right.
$$

(a) Show that for any integer $n \geqslant 1$ we have

$$
\sum_{d \mid n} \mu\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

Here and below all sums are extended only over positive divisors.
(b) Möbius inversion: Let $(G,+)$ be an abelian group and let f and g be arbitrary functions $\mathbb{Z}^{\geqslant 1} \rightarrow G$. Use (a) to show that

$$
\forall n \in \mathbb{Z}^{\geqslant 1}: g(n)=\sum_{d \mid n} f(d)
$$

if and only if

$$
\forall n \in \mathbb{Z}^{\geqslant 1}: f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d) .
$$

(c) Let $n \in \mathbb{Z}^{\geqslant 1}$ and let $\zeta \in \mathbb{C}$ be an $n^{\text {th }}$ primitive root of unit. Use (b) to show that the $n^{\text {th }}$ cyclotomic polynomial satisfies

$$
\Phi_{n}(X)=\prod_{d \mid n}\left(X^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}
$$

(d) Deduce that Φ_{n} has coefficients in \mathbb{Z}.
(e) Euler's phi function: Deduce that

$$
\varphi(n):=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) d
$$

2. Determine the possibilities for the group $\mu(K)$ of roots of unity in K for all number fields K of degree 4 over \mathbb{Q}.
3. Prove that every quadratic number field can be embedded in a cyclotomic field.
*4. (a) Determine the ring of integers of any subfield of $\mathbb{Q}\left(\mu_{\ell}\right)$ for any prime ℓ.
(b) Work out the result explicitly in the case $\ell=7$.
4. Second supplement to the quadratic reciprocity law: Prove that for any odd prime ℓ we have $\left(\frac{2}{\ell}\right)=(-1)^{\frac{\ell^{2}-1}{8}}$.
Hint: Evaluate the sum $(1+i)^{\ell}$ modulo $\ell \mathbb{Z}[i]$ in two ways.
5. (a) Compute the Legendre symbol $\left(\frac{-22}{71}\right)$.
(b) Compute the Legendre symbol $\left(\frac{3}{p}\right)$ for any odd prime p.
(c) Find distinct two digits primes p and q, such that each is a quadratic residue modulo the other.
