Number Theory I

HS 2023

Exercise sheet 5

Cyclotomic Fields, Legendre Symbol

1. The *Möbius function* $\mu : \mathbb{Z}^{\geq 1} \to \mathbb{Z}$ is defined by

 $\mu(n) := \begin{cases} (-1)^k & \text{if } n \text{ is the product of } k \ge 0 \text{ distinct primes,} \\ 0 & \text{otherwise.} \end{cases}$

(a) Show that for any integer $n \ge 1$ we have

$$\sum_{d|n} \mu(\frac{n}{d}) = \sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1. \end{cases}$$

Here and below all sums are extended only over positive divisors.

(b) *Möbius inversion:* Let (G, +) be an abelian group and let f and g be arbitrary functions $\mathbb{Z}^{\geq 1} \to G$. Use (a) to show that

$$\forall n \in \mathbb{Z}^{\geqslant 1} \colon g(n) = \sum_{d|n} f(d)$$

if and only if

$$\forall n \in \mathbb{Z}^{\geq 1} \colon f(n) = \sum_{d|n} \mu(\frac{n}{d})g(d)$$

(c) Let $n \in \mathbb{Z}^{\geq 1}$ and let $\zeta \in \mathbb{C}$ be an n^{th} primitive root of unit. Use (b) to show that the n^{th} cyclotomic polynomial satisfies

$$\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(\frac{n}{d})}.$$

- (d) Deduce that Φ_n has coefficients in \mathbb{Z} .
- (e) Euler's phi function: Deduce that

$$\varphi(n) := |(\mathbb{Z}/n\mathbb{Z})^{\times}| = \sum_{d|n} \mu(\frac{n}{d})d.$$

- 2. Determine the possibilities for the group $\mu(K)$ of roots of unity in K for all number fields K of degree 4 over \mathbb{Q} .
- 3. Prove that every quadratic number field can be embedded in a cyclotomic field.

- *4. (a) Determine the ring of integers of any subfield of Q(μ_ℓ) for any prime ℓ.
 (b) Work out the result explicitly in the case ℓ = 7.
- 5. Second supplement to the quadratic reciprocity law: Prove that for any odd prime ℓ we have $(\frac{2}{\ell}) = (-1)^{\frac{\ell^2 1}{8}}$.

Hint: Evaluate the sum $(1+i)^{\ell}$ modulo $\ell \mathbb{Z}[i]$ in two ways.

- 6. (a) Compute the Legendre symbol $\left(\frac{-22}{71}\right)$.
 - (b) Compute the Legendre symbol $\left(\frac{3}{p}\right)$ for any odd prime p.
 - (c) Find distinct two digits primes p and q, such that each is a quadratic residue modulo the other.