D-MATH Number Theory I HS 2023
Prof. Richard Pink .
Solutions 5

CycrLoToMmic FIELDS, LEGENDRE SYMBOL

1. The Mdobius function p : Z7' — 7Z is defined by

(n) = (=1)* if n is the product of k > 0 distinct primes,
K ' 0 otherwise.

(a) Show that for any integer n > 1 we have
o (1 ifn=1,
RS WILES e

Here and below all sums are extended only over positive divisors.

(b) Mébius inversion: Let (G,+) be an abelian group and let f and g be arbitrary
functions Z7! — G. Use (a) to show that

VneZ7': g(n) =) _ f(d)
din

if and only if

¥n € Z7': f(n) = ) u(3)g(d)
dn

(c) Let n € Z7! and let ¢ € C be an n'® primitive root of unit. Use (b) to show
that the n'® cyclotomic polynomial satisfies

0,(X) = J(x4 -1 @

d|n

(d) Deduce that ®,, has coefficients in Z.
(e) FEuler’s phi function: Deduce that

o(n) = |@Z/m2)| = 3 p(z)d.

dn

Solution:



(a) The first equality follows by substituting d = n/d’. Next write n = p§' - - - pkr
with distinct primes p; and exponents k; > 0. Then the divisors of n are
the numbers d = pt---plr for all choices of 0 < I; < k. If any [, > 1,
then pu(d) = 0. Hence the divisors with p(d) # 0 are precisely the numbers
d = [],cg s for all subsets S C {pi1,...,p-}. We obtain

Soud) = Y0 = 32 () = oy = LY R0

dln Sc{p1,...,pr} k=0

(b) If the first condition holds, we calculate

donad) = u) D fk) = f(k) Y ul3)

dln dln k|d kln d: k|d|n
=S FR) Y uCEY =" )Y w2 € ).
kln d: k|d|n kln el

If the second condition holds, we calculate

S rd =3 w@atk) = gk) Y w@) =39k Y ule) € g(n).

dln din  k|d kln d: k|d|n k|n el%

(c) For any m € Z?' we have X™ — 1 = [ T4 a(X), because any m'™ root of
unity is a primitive d'" root of unity for precisely one d|m. Applying Mébius
inversion (here written multiplicatively) to the map f: Z>' — C(X)* with
f(m) := ®,,(X) we obtain the desired result.

(d) By (c) the n'® cyclotomic polynomial can be written as ®,, = P(X)/Q(X)
for some polynomials P, Q) € Z[X] with constant terms +1. Viewing each
as a power series in Z[[X]] with constant term +1, the quotient is therefore
also a power series in Z[[X]] with constant term £1. But by definition ®,,
is a polynomial over C; hence the power series expansion stops and ®,, is a
polynomial in Z[X].

(e) By (c), we have
pln) = (Z/n2)"] = deg®, — 3 deg (X7~ 18) = 3 (2

din dn
2. Determine the possibilities for the group u(K) of roots of unity in K for all number

fields K of degree 4 over Q.

Solution: Let n := |u(K)|; then K contains the field of n'" roots of unity Q(s,).
Thus ¢(n) = [Q(u,)/Q] divides [K/Q] = 4. A quick computation shows that
©(n)|4 precisely for the values n = 1,2,3,4,5,6,8,10,12. Since always {£1} C

2



*4.

p(K), this leaves only the values n = 2,4,6,8,10,12. We claim that each of these
actually occurs for a number field of degree 4 over Q.

For n = 8,10, 12 the field Q(u,) already has degree ¢(n) = 4 over Q.

For n = 6 set K := Q(\/—_3, \/7) This has degree 4 over Q, because it contains
the two distinct quadratic subfields Q(v/—3) and Q(v/7) with distinct discrimi-
nants —3 and 28. Also K contains the primitive 6'" root of unity %:)’ Thus
6 divides |u(K)|; hence the above list shows that |u(K)| € {6,12}. Moreover,
|(K)| = 12 would require that K = Q(p12) and therefore Q(+v/7) C Q(p12). But
Q(p12) = Q(v/—1,+/=3) only has the three quadratic subfields Q(v/—1), Q(v/—3)
and Q(\/g) with respective discriminants 4, —3, 12. Thus this case is impossible,
and we have |u(K)| = 6, as desired.

For n = 4 we set likewise K := Q(v/—1, /7). This has degree 4 over Q, because its
quadratic subfields Q(v/—1) and Q(/7) have distinct discriminants 4 and 28. Also
K contains a primitive 4" root of unity.. Thus 4 divides |u(K)|; hence the above
list shows that |u(K)| € {4,8,12}. Here |u(K)| = 12 would require that K =
Q(pt12) and therefore Q(+v/7) € Q(u12), which we have already excluded above.
Similarly, |;£(K)| = 8 would require that K = Q(ss) and therefore Q(v/7) € Q(ys).
But Q(us) = Q(v/—1,v/2) only has the three quadratic subfields Q(v/—1), Q(v/2)
and Q(v/—2) with respective discriminants 4, 8, —8. Thus this case is impossible,
and we have |u(K)| = 4, as desired.

Finally, for n = 2 note that any subfield of R contains only the roots of unity
{£1}. An example of such a field is K := Q(v/2,v/3). This has degree 4 over Q,
because its quadratic subfields Q(y/2) and Q(v/3) have distinct discriminants.

Prove that every quadratic number field can be embedded in a cyclotomic field.

Solution: As usual write K = Q(\/E) for a squarefree integer d = £p; - - - p, with

distinct prime factors. Rewrite this in the form d = +pj---p; with p} = —p,

if p, = 3 mod (4) and p} := p, otherwise. For any positive integer n abbreviate
27mi

K, = Q(e™ ). Then, in the lecture we proved that for all v with p, odd we

have /p; € K,,. We also have /-1 € K4, and since e = 1—\/*5 we have V2 =

e +e % € Kg. Therefore vd = VEL/PT - /DF € Kypq) and hence K C Ky
(a) Determine the ring of integers of any subfield of Q(u,) for any prime /.
(b) Work out the result explicitly in the case ¢ = 7.

Solution:

(a) Fix a primitive ¢-th root of unity ¢ € C. Then for K := Q(us) we know
already that Oy = Z[¢] = Z[X]/(®,) with ®y(X) =1+ X +...+ X* 1. Thus
1,¢,...,¢" % is a Z-basis of Ok. Since 1 +( + ... + (1 = ®4(¢) = 0, we
can substitute the basis element 1 by the element ¢(*~! and deduce that the



primitive ¢-th roots of unity ¢,¢?,,...,(*! form another Z-basis of Ok. In
other words, any element of Ok can be written uniquely in the form

> a¢ (%)
jEF,

with coefficients a; € Z.

On the other hand, by the main theorem of Galois theory the subfields of K
are the fixed fields K# for all subgroups H < Gal(K/Q) = F/. For any such
H we then have O = O N K®. But the element (*) is invariant under H
if and only if the coefficient a; depends only on the coset jH C ;. Thus

Oxkn = P z-> ¢ (%)

ljler; /H '€l

(b) The group F is cyclic of order 6 and its subgroups are precisely 1, {1},
{1,2,4}, and F5.
i. For H =1 we get K = K and hence Ogu = O = Z[(].
ii. For H=F} we get K¥ = Q and hence Ogn = Z.
iii. For H = {1,2,4} the basis in (%) consists of w = ¢ + ¢? + ¢* and
W=+ 5+ (5. Here
wtw = (+CHEHEHCHE = -1
hence Oxn = Z[w]. More precisely we have

w = CHC 0 +2004+2C = w2 = —w—2.

Thus w? +w + 2 = 0 and hence w = %ﬁ Indeed, since —7 = 1 mod
(4), we already know that the ring of integers of Q(v/—7) is Z[=£/=T].

iv. For H = {£1} the basis in (x*) consists of n := (+(' and n/ := (*+ (2
and 1" := (3 + (3. Here

o= G240 =0 42 and
0+ = (T FCHTTHEFCT = L

hence we have = n*> —2 and " = 1 —n—n? and therefore Oxn = Z|n).
Moreover we have

N = CH3CH3CTTH2T = "+ 3y = 1+ 2y
and so ° +n* —2n—1=0. Thus

Oxn = Z[n = Z[X]/(X?+X? —2X —1).



5. Second supplement to the quadratic reciprocity law: Prove that for any odd prime
1

2o
( we have (%) = (—1)"s .
Hint: Evaluate the sum (1 + 4)* modulo ¢Z[i] in two ways.

Solution: We already know that 25 = (%) mod ¢. Thus on the one hand we
have

1+ = A+)((A+D>)F = (1+9)2)7 = (1+i)(2)i7 mod (Z]i].
On the other hand, as the map z — 2 is a ring homomorphism modulo ¢, we get
(1+4)" = 1+4° mod ¢Z[i].

Together this shows that
(1+4)(2)i7 = 14" mod ¢Z[i].

Here both sides are complex numbers of absolute value < V2. As every non-zero
element of ¢Z[i] has absolute value > ¢ > 21/2, this congruence is actually an
equality. In other words we have

(%) - 1112;2%

Here the right hand side depends only on ¢ modulo (8). Also ¢ is odd by assump-
tion. By evaluating four cases the stated formula follows.

6. (a) Compute the Legendre symbol (22).
(b) Compute the Legendre symbol (2) for any odd prime p.

P
(c¢) Find distinct two digits primes p and ¢, such that each is a quadratic residue
modulo the other.

Solution:

a) The multiplicativity of the Legendre symbol shows that (=22) = (=) (2 ) ().
71 71 ) \71)\71
Here we have (=) = (—1)® = —1 by the first supplement to the quadratic

reciprocity law, and (%) = (—1)%" = 1 by the second supplement. Further-

more by the quadratic reciprocity law itself we have (1) (%) = (—=1)%% = —1
and so (#) = —(8) = —(2&). Likewise we have (11—51) (&) =(-1*° =1
and so (1—51) = (%5 = (%) = 1. Therefore (%) = —1 and so (_7—212) =

(-1)-1-(-1)=1.
(Indeed we have 72 = 49 = —22 mod (71).)
(b) By definition we have (% = 0. For any prime p > 3 the law of quadratic

reciprocity states that (%) () = (—1)1%1. Here (%) and (—1)% depend only



on the residue classes of p modulo 3 and 4, respectively. We thus compute

pmod (12) | (%) (-1)z (%)
1 1 1 1
5 -1 1| —1
7 1 —-1] -1
11 -1 -1 1
The answer is therefore
0 ifp=3,
3 _ e
(2) = 1 if p =41 mod (12),

—1 if p =45 mod (12).

(c) If at least one of the primes is = 1 mod (4), the quadratic reciprocity law

says that (£) = (£). Then it only remains to guarantee that (1) = 1. Taking
p=13and ¢ = 17 we get (12) = (75) = 1, because 4 is a square.

(Indeed we have 2% = 4 = 17 mod (13) and 8% = 64 = 13 mod (17).)



