
D-MATH Number Theory I HS 2023
Prof. Richard Pink

Solutions 5

Cyclotomic Fields, Legendre Symbol

1. The Möbius function µ : Z⩾1 → Z is defined by

µ(n) :=

 (−1)k if n is the product of k ⩾ 0 distinct primes,
0 otherwise.

(a) Show that for any integer n ⩾ 1 we have∑
d|n

µ(n
d
) =

∑
d|n

µ(d) =

 1 if n = 1,
0 if n > 1.

Here and below all sums are extended only over positive divisors.

(b) Möbius inversion: Let (G,+) be an abelian group and let f and g be arbitrary
functions Z⩾1 → G. Use (a) to show that

∀n ∈ Z⩾1 : g(n) =
∑
d|n

f(d)

if and only if

∀n ∈ Z⩾1 : f(n) =
∑
d|n

µ(n
d
)g(d).

(c) Let n ∈ Z⩾1 and let ζ ∈ C be an nth primitive root of unit. Use (b) to show
that the nth cyclotomic polynomial satisfies

Φn(X) =
∏
d|n

(Xd − 1)µ(
n
d
).

(d) Deduce that Φn has coefficients in Z.
(e) Euler’s phi function: Deduce that

φ(n) := |(Z/nZ)×| =
∑
d|n

µ(n
d
)d.

Solution:
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(a) The first equality follows by substituting d = n/d′. Next write n = pk11 · · · pkrr
with distinct primes pi and exponents ki > 0. Then the divisors of n are
the numbers d = pl11 · · · plrr for all choices of 0 ⩽ li ⩽ ki. If any li > 1,
then µ(d) = 0. Hence the divisors with µ(d) ̸= 0 are precisely the numbers
d =

∏
s∈S s for all subsets S ⊂ {p1, . . . , pr}. We obtain

∑
d|n

µ(d) =
∑

S⊂{p1,...,pr}

(−1)|S| =
r∑

k=0

(
r

k

)
(−1)k = (1− 1)r =

 0 if r > 0,
1 if r = 0.

(b) If the first condition holds, we calculate∑
d|n

µ(n
d
)g(d) =

∑
d|n

µ(n
d
)
∑
k|d

f(k) =
∑
k|n

f(k)
∑

d: k|d|n

µ(n
d
)

=
∑
k|n

f(k)
∑

d: k|d|n

µ(n/k
d/k

) =
∑
k|n

f(k)
∑
e|n

k

µ(n/k
e
)
(a)
= f(n).

If the second condition holds, we calculate∑
d|n

f(d) =
∑
d|n

∑
k|d

µ( d
k
)g(k) =

∑
k|n

g(k)
∑

d: k|d|n

µ( d
k
) =

∑
k|n

g(k)
∑
e|n

k

µ(e)
(a)
= g(n).

(c) For any m ∈ Z⩾1 we have Xm − 1 =
∏

d|m Φd(X), because any mth root of

unity is a primitive dth root of unity for precisely one d|m. Applying Möbius
inversion (here written multiplicatively) to the map f : Z⩾1 → C(X)× with
f(m) := Φm(X) we obtain the desired result.

(d) By (c) the nth cyclotomic polynomial can be written as Φn = P (X)/Q(X)
for some polynomials P,Q ∈ Z[X] with constant terms ±1. Viewing each
as a power series in Z[[X]] with constant term ±1, the quotient is therefore
also a power series in Z[[X]] with constant term ±1. But by definition Φn

is a polynomial over C; hence the power series expansion stops and Φn is a
polynomial in Z[X].

(e) By (c), we have

φ(n) = |(Z/nZ)×| = degΦn =
∑
d|n

deg
(
(Xd − 1)µ(

n
d
)
)

=
∑
d|n

µ(n
d
)d.

2. Determine the possibilities for the group µ(K) of roots of unity inK for all number
fields K of degree 4 over Q.

Solution: Let n := |µ(K)|; then K contains the field of nth roots of unity Q(µn).
Thus φ(n) = [Q(µn)/Q] divides [K/Q] = 4. A quick computation shows that
φ(n)|4 precisely for the values n = 1, 2, 3, 4, 5, 6, 8, 10, 12. Since always {±1} ⊂
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µ(K), this leaves only the values n = 2, 4, 6, 8, 10, 12. We claim that each of these
actually occurs for a number field of degree 4 over Q.

For n = 8, 10, 12 the field Q(µn) already has degree φ(n) = 4 over Q.

For n = 6 set K := Q(
√
−3,

√
7). This has degree 4 over Q, because it contains

the two distinct quadratic subfields Q(
√
−3) and Q(

√
7) with distinct discrimi-

nants −3 and 28. Also K contains the primitive 6th root of unity 1+
√
−3

2
. Thus

6 divides |µ(K)|; hence the above list shows that |µ(K)| ∈ {6, 12}. Moreover,
|µ(K)| = 12 would require that K = Q(µ12) and therefore Q(

√
7) ⊂ Q(µ12). But

Q(µ12) = Q(
√
−1,

√
−3) only has the three quadratic subfields Q(

√
−1), Q(

√
−3)

and Q(
√
3) with respective discriminants 4, −3, 12. Thus this case is impossible,

and we have |µ(K)| = 6, as desired.

For n = 4 we set likewise K := Q(
√
−1,

√
7). This has degree 4 over Q, because its

quadratic subfields Q(
√
−1) and Q(

√
7) have distinct discriminants 4 and 28. Also

K contains a primitive 4th root of unity.. Thus 4 divides |µ(K)|; hence the above
list shows that |µ(K)| ∈ {4, 8, 12}. Here |µ(K)| = 12 would require that K =
Q(µ12) and therefore Q(

√
7) ⊂ Q(µ12), which we have already excluded above.

Similarly, |µ(K)| = 8 would require thatK = Q(µ8) and thereforeQ(
√
7) ⊂ Q(µ8).

But Q(µ8) = Q(
√
−1,

√
2) only has the three quadratic subfields Q(

√
−1), Q(

√
2)

and Q(
√
−2) with respective discriminants 4, 8, −8. Thus this case is impossible,

and we have |µ(K)| = 4, as desired.

Finally, for n = 2 note that any subfield of R contains only the roots of unity
{±1}. An example of such a field is K := Q(

√
2,
√
3). This has degree 4 over Q,

because its quadratic subfields Q(
√
2) and Q(

√
3) have distinct discriminants.

3. Prove that every quadratic number field can be embedded in a cyclotomic field.

Solution: As usual write K = Q(
√
d) for a squarefree integer d = ±p1 · · · pr with

distinct prime factors. Rewrite this in the form d = ±p∗1 · · · p∗r with p∗ν := −pν
if pν ≡ 3 mod (4) and p∗ν := pν otherwise. For any positive integer n abbreviate

Kn := Q(e
2πi
n ). Then, in the lecture we proved that for all ν with pν odd we

have
√
p∗ν ∈ Kpν . We also have

√
−1 ∈ K4, and since e

2πi
8 = 1+i√

2
we have

√
2 =

e
2πi
8 + e−

2πi
8 ∈ K8. Therefore

√
d =

√
±1

√
p∗1 · · ·

√
p∗r ∈ K4|d| and hence K ⊂ K4|d|.

*4. (a) Determine the ring of integers of any subfield of Q(µℓ) for any prime ℓ.

(b) Work out the result explicitly in the case ℓ = 7.

Solution:

(a) Fix a primitive ℓ-th root of unity ζ ∈ C. Then for K := Q(µℓ) we know
already that OK = Z[ζ] ∼= Z[X]/(Φℓ) with Φℓ(X) = 1+X+ . . .+Xℓ−1. Thus
1, ζ, . . . , ζℓ−2 is a Z-basis of OK . Since 1 + ζ + . . . + ζℓ−1 = Φℓ(ζ) = 0, we
can substitute the basis element 1 by the element ζℓ−1 and deduce that the
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primitive ℓ-th roots of unity ζ, ζ2, , . . . , ζℓ−1 form another Z-basis of OK . In
other words, any element of OK can be written uniquely in the form∑

j∈F×
ℓ

ajζ
j (∗)

with coefficients aj ∈ Z.
On the other hand, by the main theorem of Galois theory the subfields of K
are the fixed fields KH for all subgroups H < Gal(K/Q) ∼= F×

ℓ . For any such
H we then have OKH = OK ∩KH . But the element (∗) is invariant under H
if and only if the coefficient aj depends only on the coset jH ⊂ F×

ℓ . Thus

OKH =
⊕

[j]∈F×
ℓ /H

Z ·
∑
j′∈[j]

ζj
′
. (∗∗)

(b) The group F×
7 is cyclic of order 6 and its subgroups are precisely 1, {±1},

{1, 2, 4}, and F×
7 .

i. For H = 1 we get KH = K and hence OKH = OK = Z[ζ].
ii. For H = F×

ℓ we get KH = Q and hence OKH = Z.
iii. For H = {1, 2, 4} the basis in (∗∗) consists of ω := ζ + ζ2 + ζ4 and

ω′ := ζ3 + ζ5 + ζ6. Here

ω + ω′ = ζ + ζ2 + ζ4 + ζ3 + ζ5 + ζ6 = −1;

hence OKH = Z[ω]. More precisely we have

ω2 = ζ2 + ζ4 + ζ8 + 2ζ3 + 2ζ5 + 2ζ6 = ω + 2ω′ = −ω − 2.

Thus ω2 + ω + 2 = 0 and hence ω = −1±
√
−7

2
. Indeed, since −7 ≡ 1 mod

(4), we already know that the ring of integers of Q(
√
−7 ) is Z[−1±

√
−7

2
].

iv. For H = {±1} the basis in (∗∗) consists of η := ζ+ζ−1 and η′ := ζ2+ζ−2

and η′′ := ζ3 + ζ−3. Here

η2 = ζ2 + 2 + ζ−2 = η′ + 2 and
η + η′ + η′′ = ζ + ζ−1 + ζ2 + ζ−2 + ζ3 + ζ−3 = −1;

hence we have η′ = η2−2 and η′′ = 1−η−η2 and therefore OKH = Z[η].
Moreover we have

η3 = ζ3 + 3ζ + 3ζ−1 + 2ζ−3 = η′′ + 3η = 1 + 2η − η2

and so η3 + η2 − 2η − 1 = 0. Thus

OKH = Z[η] ∼= Z[X]/(X3 +X2 − 2X − 1).
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5. Second supplement to the quadratic reciprocity law: Prove that for any odd prime

ℓ we have (2
ℓ
) = (−1)

ℓ2−1
8 .

Hint: Evaluate the sum (1 + i)ℓ modulo ℓZ[i] in two ways.

Solution: We already know that 2
ℓ−1
2 ≡

(
2
ℓ

)
mod ℓ. Thus on the one hand we

have

(1 + i)ℓ = (1 + i)((1 + i)2)
ℓ−1
2 = (1 + i)(2i)

ℓ−1
2 ≡ (1 + i)

(
2
ℓ

)
i
ℓ−1
2 mod ℓZ[i].

On the other hand, as the map x 7→ xℓ is a ring homomorphism modulo ℓ, we get

(1 + i)ℓ ≡ 1 + iℓ mod ℓZ[i].

Together this shows that

(1 + i)
(
2
ℓ

)
i
ℓ−1
2 ≡ 1 + iℓ mod ℓZ[i].

Here both sides are complex numbers of absolute value ⩽
√
2. As every non-zero

element of ℓZ[i] has absolute value ⩾ ℓ > 2
√
2, this congruence is actually an

equality. In other words we have(
2
ℓ

)
= 1+iℓ

1+i
· i

1−ℓ
2 .

Here the right hand side depends only on ℓ modulo (8). Also ℓ is odd by assump-
tion. By evaluating four cases the stated formula follows.

6. (a) Compute the Legendre symbol
(−22

71

)
.

(b) Compute the Legendre symbol
(
3
p

)
for any odd prime p.

(c) Find distinct two digits primes p and q, such that each is a quadratic residue
modulo the other.

Solution:

(a) The multiplicativity of the Legendre symbol shows that
(−22

71

)
=

(−1
71

)(
2
71

)(
11
71

)
.

Here we have
(−1
71

)
= (−1)35 = −1 by the first supplement to the quadratic

reciprocity law, and
(

2
71

)
= (−1)630 = 1 by the second supplement. Further-

more by the quadratic reciprocity law itself we have
(
11
71

)(
71
11

)
= (−1)5·35 = −1

and so
(
11
71

)
= −

(
71
11

)
= −

(
5
11

)
. Likewise we have

(
5
11

)(
11
5

)
= (−1)2·5 = 1

and so
(

5
11

)
=

(
11
5

)
=

(
1
5

)
= 1. Therefore

(
11
71

)
= −1 and so

(−22
71

)
=

(−1) · 1 · (−1) = 1.

(Indeed we have 72 = 49 ≡ −22 mod (71).)

(b) By definition we have
(
3
3

)
= 0. For any prime p > 3 the law of quadratic

reciprocity states that
(
3
p

)(
p
3

)
= (−1)

p−1
2 . Here

(
p
3

)
and (−1)

p−1
2 depend only
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on the residue classes of p modulo 3 and 4, respectively. We thus compute

p mod (12)
(
p
3

)
(−1)

p−1
2

(
3
p

)
1 1 1 1

5 −1 1 −1

7 1 −1 −1

11 −1 −1 1

The answer is therefore

(
3
p

)
=


0 if p = 3,
1 if p ≡ ±1 mod (12),

−1 if p ≡ ±5 mod (12).

(c) If at least one of the primes is ≡ 1 mod (4), the quadratic reciprocity law
says that (p

q
) = ( q

p
). Then it only remains to guarantee that ( q

p
) = 1. Taking

p = 13 and q = 17 we get (17
13
) = ( 4

13
) = 1, because 4 is a square.

(Indeed we have 22 = 4 ≡ 17 mod (13) and 82 = 64 ≡ 13 mod (17).)
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