Number Theory I

Exercise sheet 6

IDEAL CLASS GROUP

- 1. (a) Show that the number fields $\mathbb{Q}(\sqrt{11})$ and $\mathbb{Q}(\sqrt{-11})$ have class number 1.
 - (b) Show that the class group of $\mathbb{Q}(\sqrt{-14})$ is cyclic of order 4.
- 2. (a) Let K be a number field. Let \mathfrak{a} be a fractional ideal of \mathcal{O}_K and $m \ge 1$ an integer such that $\mathfrak{a}^m = (\alpha)$. Let L/K be a finite extension containing an element $\sqrt[m]{\alpha}$ such that $\sqrt[m]{\alpha}^m = \alpha$. Show that $\mathfrak{a}\mathcal{O}_L = \sqrt[m]{\alpha}\mathcal{O}_L$.
 - (b) Deduce that there is a finite field extension L/K such that for every fractional ideal \mathfrak{a} of \mathcal{O}_K the ideal $\mathfrak{a}\mathcal{O}_L$ is principal.
- 3. Consider a prime $p \equiv 3 \mod (4)$. It is known that the class number of $K := \mathbb{Q}(\sqrt{p})$ is odd. Use this fact to prove that there exist $a, b \in \mathbb{Z}$ such that

$$|a^2 - pb^2| = 2$$

Hint: Study the ideal $\mathfrak{p} := (2, 1 + \sqrt{p})$.

- 4. Suppose that the equation $y^2 = x^5 2$ has a solution with $x, y \in \mathbb{Z}$.
 - (a) Determine the ring of integers and the class number of $K := \mathbb{Q}(\sqrt{-2})$.
 - (b) Show that y is odd and that the two ideals $(y \pm \sqrt{-2})$ of \mathcal{O}_K are coprime.
 - (c) Prove that $y + \sqrt{-2}$ is a 5-th power in \mathcal{O}_K .
 - (d) Deduce a contradiction, proving that the equation has no integer solution.
- *5. Let $d := -p_1 \cdots p_r$ with distinct primes p_i and $K := \mathbb{Q}(\sqrt{d})$. For any $1 \leq i \leq r$ consider the ideal $\mathfrak{p}_i := (p_i, \sqrt{d})$ of \mathcal{O}_K , and for any subset $I \subset \{1, \ldots, r\}$ consider the ideal $\mathfrak{a}_I := \prod_{i \in I} \mathfrak{p}_i$.
 - (a) Show that $\mathbf{p}_i^2 = (p_i)$.
 - (b) Deduce that \mathbf{p}_i is a maximal ideal above p_i with norm $\text{Nm}(\mathbf{p}_i) = p_i$.
 - (c) Show that \mathfrak{a}_I is principal for $I = \{1, \ldots, r\}$.
 - (d) Show that \mathfrak{a}_I is not principal for any $I \neq \emptyset, \{1, \ldots, r\}$.
 - (e) Conclude that the class group $\operatorname{Cl}(\mathcal{O}_K)$ contains a subgroup isomorphic to \mathbb{F}_2^{r-1} .