Exercise sheet 6

Ideal Class Group

1. (a) Show that the number fields $\mathbb{Q}(\sqrt{11})$ and $\mathbb{Q}(\sqrt{-11})$ have class number 1 .
(b) Show that the class group of $\mathbb{Q}(\sqrt{-14})$ is cyclic of order 4 .
2. (a) Let K be a number field. Let \mathfrak{a} be a fractional ideal of \mathcal{O}_{K} and $m \geqslant 1$ an integer such that $\mathfrak{a}^{m}=(\alpha)$. Let L / K be a finite extension containing an element $\sqrt[m]{\alpha}$ such that $\sqrt[m]{\alpha}{ }^{m}=\alpha$. Show that $\mathfrak{a} \mathcal{O}_{L}=\sqrt[m]{\alpha} \mathcal{O}_{L}$.
(b) Deduce that there is a finite field extension L / K such that for every fractional ideal \mathfrak{a} of \mathcal{O}_{K} the ideal $\mathfrak{a} \mathcal{O}_{L}$ is principal.
3. Consider a prime $p \equiv 3 \bmod$ (4). It is known that the class number of $K:=\mathbb{Q}(\sqrt{p})$ is odd. Use this fact to prove that there exist $a, b \in \mathbb{Z}$ such that

$$
\left|a^{2}-p b^{2}\right|=2 .
$$

Hint: Study the ideal $\mathfrak{p}:=(2,1+\sqrt{p})$.
4. Suppose that the equation $y^{2}=x^{5}-2$ has a solution with $x, y \in \mathbb{Z}$.
(a) Determine the ring of integers and the class number of $K:=\mathbb{Q}(\sqrt{-2})$.
(b) Show that y is odd and that the two ideals $(y \pm \sqrt{-2})$ of \mathcal{O}_{K} are coprime.
(c) Prove that $y+\sqrt{-2}$ is a 5 -th power in \mathcal{O}_{K}.
(d) Deduce a contradiction, proving that the equation has no integer solution.
*5. Let $d:=-p_{1} \cdots p_{r}$ with distinct primes p_{i} and $K:=\mathbb{Q}(\sqrt{d})$. For any $1 \leqslant i \leqslant r$ consider the ideal $\mathfrak{p}_{i}:=\left(p_{i}, \sqrt{d}\right)$ of \mathcal{O}_{K}, and for any subset $I \subset\{1, \ldots, r\}$ consider the ideal $\mathfrak{a}_{I}:=\prod_{i \in I} \mathfrak{p}_{i}$.
(a) Show that $\mathfrak{p}_{i}^{2}=\left(p_{i}\right)$.
(b) Deduce that \mathfrak{p}_{i} is a maximal ideal above p_{i} with norm $\operatorname{Nm}\left(\mathfrak{p}_{i}\right)=p_{i}$.
(c) Show that \mathfrak{a}_{I} is principal for $I=\{1, \ldots, r\}$.
(d) Show that \mathfrak{a}_{I} is not principal for any $I \neq \varnothing,\{1, \ldots, r\}$.
(e) Conclude that the class group $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ contains a subgroup isomorphic to \mathbb{F}_{2}^{r-1}.

