D-MATH Number Theory I HS 2023
Prof. Richard Pink .
Solutions 6

IDEAL CLASS GROUP

1. (a) Show that the number fields Q(v/11) and Q(1/—11) have class number 1.
(b) Show that the class group of Q(1/—14) is cyclic of order 4.
Solution: See also Chapter 12.6 in Alaca, Williams [1] to compute the class group.

(a) Case K := Q(v/11): Since 11 = 3 mod 4, we have O = Z[V11] =
ZIX]/(X?* — 11) and disc(Og) = 4 -11 = 44. Since 11 > 0, the field is
real quadratic with » = 2 and s = 0. By Proposition 4.3.2 from the lecture,
every ideal class in Cl(Ok) contains an ideal a C Ok with

Norm(a) < (%)s\/ldisc((’);{) = V44 = 6.6332...

Therefore, it suffices to show that all ideals a of Ok of norm < 6 are principal.

Recall that for any non-zero ideal a C Ok we have Norm(a) = [Ok : a]. In
particular Norm(a) = 1 if and only if a = (1), which is principal. Moreover,
any prime divisor p|a satisfies Norm(p)| Norm(a). As any non-zero ideal is a
product of prime ideals, it thus suffices to show that every prime ideal p of
Ok of norm < 6 is principal. For any such p, the norm is the order of the
residue field and therefore a prime power.

If Norm(p) = 2, then (2) C p, and p/(2) is an ideal of index 2 of the factor
ring Ok /(2) = Fo[X]/(X? + 1) = Fo[X]/(1 + X)2. Thus p/(2) corresponds
to the unique maximal ideal (1 + X), and so p = (2,1 + +/11). We must
show that p = () for some a = a + byv/11 € Og. Any such o must satisfy
la* — 110*| = |Normg g(a)| = Norm((er)) = 2. A little experimentation
shows that the equality |a> — 116%| = 2 holds for a := 3 + v/11. For this we
then in fact have Norm((«)) = 2 and hence (o) = p. Thus the only ideal of
Ok of norm 2 is principal.

If Norm(p) = 3, then likewise p/(3) is an ideal of index 3 of Ok/(3) =
F3[X]/(X? +1). But since X? + 1 is irreducible in F3[X], this factor ring is
a field of order 9 and does not possess an ideal of index 3. Thus there exists
no ideal of O of norm 3.

If Norm(p) = 4, then (4) C p. For p prime this implies that (2) C p, which by
comparing indices implies that (2) = p. But we have seen above that O /(2)
is not a field; hence (2) is not a prime ideal. Thus there is no prime ideal of
norm 4.
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If Norm(p) = 5, then likewise p/(5) is an ideal of index 5 of Ok/(5) =
F5[X]/(X? —1) = F5[X]/((1 + X)(1 — X)). Thus p/(5) corresponds to the
maximal ideal (14+X) and so p = (5, 14+/11) for some choice of sign. We must,
show that p = () for some a = a + by/11 € Ok. Any such « must satisfy
|a*—11b*| = | Normpg g(or)| = Norm((«v)) = 5. A little experimentation shows
that the equality |a® — 116?| = 5 holds for a ;= 4 F /11 = 5— (1 £/11) € p.
For this we then have Norm((a)) = 5, and comparing indices shows that
(o) = p. Thus every ideal of O of norm 5 is principal.

Finally, there is no prime ideal with Norm(p) = 6, because 6 is not a prime
power.

Case K := Q(v/—11): Since —11 = 1 mod 4, we have O = Z[*F/1] =
Z|X]/(X? - X +3) and disc(Of) = —11. Since Q(v/—11) does not have any
embeddings into R, we have r = 0 and s = 1. By Proposition 4.3.2 from the
lecture, every ideal class in Cl(O) contains an ideal a C O with

2\° 2
Norm(a) < <—> |disc(Ok)| = —=-V11 = 2.1114...
m 7'('

Therefore, it suffices to show that all ideals a of Ok of norm < 2 are principal.
Again Norm(a) = [Ok : a] = 1 if and only if a = (1), which is principal.

If Norm(a) = 2, then (2) C a, and a/(2) is an ideal of index 2 of the factor
ring O /(2) & Fo[X]/(X? — X 4+ 3). Since X? - X +3=X*+X+11in
[Fy[X] is irreducible, this factor ring is a field of order 4 and does not possess
an ideal of index 2. Thus there exists no ideal of Ok of norm 2, and we are
done.

See Example 12.6.4 in [1]. To factor the ideals (2) and (3), instead of using the
Legendre symbol, one can do the following: We have O /(2) = Fo[X]/(X?)
with (X) the only prime ideal and hence (2) = (2,v/—14)%. Similarly, we have
Ok /(3) 2 F3[X]/(X? + 2) which has the prime ideals (1 — X) and (1 + X).
Hence (3) = (3,1 ++/—14) - (3,1 — /—14).

Let K be a number field. Let a be a fractional ideal of O and m > 1 an
integer such that a™ = (a). Let L/K be a finite extension containing an

element ¥/« such that {/a™ = «. Show that a0y = ¥/a Oy.

Deduce that there is a finite field extension L/K such that for every fractional
ideal a of Ok the ideal aQp, is principal.

Solution:

Since a™ = aQ, it follows that (aOp)™ = a™Op = aOp = Ya™Op =
(%/aOp)™. Unique factorization of fractional ideals in L now implies that

CIOL = WOL



(b) Let h be the class number of K and let ay,...,a, denote a system of repre-
sentatives of the elements of the class group. For each i choose a; € K*
such that a? = (a;) and an element {/a; € K such that {/a;" = «;.

Set L := K({/ay,...,%/a,) C K. Then for any fractional ideal a of Ok
we have a = aa; for some a € K* and some j; hence by (a) we have
a0, = aa;O0r, = o/a; Oy, which is a principal ideal.

3. Consider a prime p = 3 mod (4). It is known that the class number of K := Q(/p)
is odd. Use this fact to prove that there exist a,b € Z such that

la® — pb®| = 2.

Hint: Study the ideal p := (2,14 /D).

Solution: We compute

p? = (4,20 +Vd),1+Vd)?) = (4,2+2Vd, 1+d+2Vd) = (4,2+2Vd ,d—1).
Since d — 1 = 2 mod (4), this ideal contains the element ged(4,d — 1) = 2. As

every generator is divisible by 2, it follows that p? = (2).

On the one hand this implies that Nm(p)? = Nm((2)) = 4 and hence Nm(p) = 2.
On the other hand it implies that the corresponding element [p] of the class group
Cl(Ok) has order dividing 2. As the class number is odd, it follows that this
element is trivial. Therefore p is a principal ideal.

Now p = 3 mod (4) implies that Ox = Z[,/p]. Thus there exist integers a,b with
p = (a+b,/p). Computing the norm yields

2 = Nm(p) = |Nmgg(a+byp)l = [(a+by/p)la—byp)l = la* —pb’.

4. Suppose that the equation y? = 2° — 2 has a solution with z,y € Z.

(a) Determine the ring of integers and the class number of K := Q(v/—2).
(b) Show that y is odd and that the two ideals (y £ v/—2) of Ok are coprime.
(c) Prove that y + +/—2 is a 5-th power in Ok.

(d) Deduce a contradiction, proving that the equation has no integer solution.
Solution: (a) Since —2 # 1 mod 4, we have Ok = Z[y/—2] and disc(Of) = —8.

Furthermore, we have r = 0 and s = 1. To compute the class number of K, we use
Minkowski’s bound: Every ideal class in C1(O) contains an ideal a C Ok with

2
Norm(a) < =vV8=18... < 2.
T
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Since the only ideal in Ok with norm 1 is the unit ideal, it follows that the class
group is trivial and the class number is 1.

(b) Assume, for contradiction, that y is even. Then z° — 2 = %> = 0 mod 4.
By checking all residue classes in Z/47Z, the equation > —2 = 0 mod 4 has no
solutions. We obtain a contradiction and hence y is odd.

Next the ideal (y +v/—2) + (y — v/—2) contains the element 21/—2 and hence its
square —8. But it also contains the integer (y + v/—2)(y — v—2) = * + 2, which
is odd, because y is odd. Thus it contains 1, and so the ideals (y + /—2) and
(y — /—2) are coprime.

(c) Since the class number is 1, the ring Ok is a unique factorization domain.
Since 2° = (y + v/=2)(y — v/—2), where the factors are coprime, it follows that
y +v—2 = ua® for some a € O and some unit u € 0. But here O = {£1}
has order 2, so we have u = u® and hence y + /—2 = u’a® = (ua)®.

(d) By (c), we can write y ++v/—2 = (a + by/—2)° for some a,b € Z. The binomial
expansion yields

y+vV-2=(a+b/=2)" = (a’ — 20a°b* + 20ab*) + (5a*b — 20a’b” + 40°) /2.
Comparing coefficients shows that b(5a* — 20a?0* + 4b*) = 1. This implies that
b = %1 and hence 5a* — 20a® + 4 = b.

If b = 1, we have 5a* — 20a? + 3 = 0. Thus a? is a rational root of the quadratic
polynomial 5X?2—20X +3. But this polynomial has discriminant (—20)%*—4-5-3 =
20 - 17, which is not a square in QQ, hence it does not possess any rational root.

If b= —1, we have 5a* — 20a® + 5 = 0. Dividing by 5, we obtain a* —4a?+1 = 0.
Thus a? is a rational root of the quadratic polynomial X2 — 4X + 1. But this
polynomial has discriminant 12, which is not a square in Q, hence it does not
possess any rational root.

In either case we have obtained a contradiction, proving that y? = 2% — 2 has no
solutions in Z.

P.S.: Is there a direct proof that does not use algebraic number theory?

Let d := —py - - - p, with distinct primes p; and K := Q(v/d). For any 1 <i < r
consider the ideal p; := (p;, V/d) of Ok, and for any subset I C {1,...,7} consider
the ideal a; := [[,; bs.

(a) Show that p? = (p;).
(b) Deduce that p; is a maximal ideal above p; with norm Nm(p;) = p;.

)

)
(c) Show that a; is principal for I = {1,...,r}.
(d) Show that a; is not principal for any I # @, {1,...,r}.
)

(e) Conclude that the class group Cl(O) contains a subgroup isomorphic to Fj *.
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Solution:

(a) By definition we have p? = (p;, Vd)? = (p?, piv/d, d). Here p? and d lie in Z
and have greatest common divisor p;. Thus p; is a Z-linear combination of p?
and d, so in particular it lies in p?. Conversely each of the stated generators
of p? is an Ox-multiple of p;. Therefore p? = (p;).

(b) The multiplicativity of the norm and the fact that Ok is a free Z-module of
rank 2 show that

Nm(p)? = Nm(p?) £ Nm((p)) = [Ox :piOx] = P2.

Therefore
Ok /pil = [Ok :p;] = Nm(p;) = p;.

Thus Ok /p; is a finite ring of prime order p; and therefore isomorphic to F,,.
As this is a field, the ideal p; is a maximal ideal. Since p; = 0 in F,, we must
have p;,Z C p; NZ. As both are non-zero prime ideals of Z, we have equality,
and so p; is a prime ideal above p;.

For the rest observe that by the multiplicativity of the norm we have

Nm(a;) = HNm(pi) ) Hpi =:ay. (%)

il el

(c) For I = {1,...,r} observe first that by construction we have v/d € (_, pi.
Here the ideals p; are pairwise coprime by (b); hence (\i_, p; = [['_, pi = ar.
Therefore (v/d) C a;. On the other hand we have Nm(a;) = [[_,pi =
|d| by (x) and Nm((V/d)) = | Nmg/g(Vd)| = |d|. Since moreover we have
Nm((vd)) = [ar : (v/d)] - Nm(a;), it follows that a; = (v/d ).

(d) Suppose that I # &, {1,...,r} and that a; is principal. We distinguish cases.

i. If d = 2,3 mod (4), then Og = Z[/d]; hence a; = (a + bv/d) for some
a,b € Z. Then by (%) we have

ar = Nm(a;) = |Nmgsgla+bVd)| = |a® —b%d] = a® +b|d|.

Here the right hand side is > |d| if b # 0. But I # {1,...,r} implies
that a; < |d|. Thus we must have b = 0 and therefore a; = a®. But by
assumption ay is squarefree and > 1, so we have a contradiction.

ii. If d =1 mod (4), then O = Z[Hg/a]; hence a; = (a + b#) for some
a,b € Z. Then by (%) we have

ar = Nmfay) = |Nmggg(a+ b5/ = (a+ 5 +1dl - (3)°,



Multiplying by 4 yields an equation in integers:
4a; = (2a+0b)* + |d| - b*.

Since ay is squarefree and divides |d|, this equation implies that a;|2a+b.
Dividing by a; thus yields the equation

4 = a1~(22—fl’)2+%-b2

where each factor is an integer. Here by assumption a; and % are coprime
integers > 1; hence their sum is > 5. The equality therefore requires that

one of the summands on the right hand side vanishes. As neither a; nor

% is a square, this yields a contradiction in both cases.

(e) The equality in (a) implies that we have a well-defined group homomorphism

r—1
F,~t — Cl(Ok), (m;); — [H p;’“}.
=1

By (d) its kernel is zero; hence it is injective.
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