
D-MATH Number Theory I HS 2023
Prof. Richard Pink

Solutions 6

Ideal Class Group

1. (a) Show that the number fields Q(
√
11) and Q(

√
−11) have class number 1.

(b) Show that the class group of Q(
√
−14 ) is cyclic of order 4.

Solution: See also Chapter 12.6 in Alaca, Williams [1] to compute the class group.

(a) Case K := Q(
√
11): Since 11 ≡ 3 mod 4, we have OK = Z[

√
11] ∼=

Z[X]/(X2 − 11) and disc(OK) = 4 · 11 = 44. Since 11 > 0, the field is
real quadratic with r = 2 and s = 0. By Proposition 4.3.2 from the lecture,
every ideal class in Cl(OK) contains an ideal a ⊆ OK with

Norm(a) ⩽

(
2

π

)s√
| disc(OK)| =

√
44 = 6.6332...

Therefore, it suffices to show that all ideals a of OK of norm ⩽ 6 are principal.

Recall that for any non-zero ideal a ⊂ OK we have Norm(a) = [OK : a]. In
particular Norm(a) = 1 if and only if a = (1), which is principal. Moreover,
any prime divisor p|a satisfies Norm(p)|Norm(a). As any non-zero ideal is a
product of prime ideals, it thus suffices to show that every prime ideal p of
OK of norm ⩽ 6 is principal. For any such p, the norm is the order of the
residue field and therefore a prime power.

If Norm(p) = 2, then (2) ⊆ p, and p/(2) is an ideal of index 2 of the factor
ring OK/(2) ∼= F2[X]/(X2 + 1) = F2[X]/(1 + X)2. Thus p/(2) corresponds
to the unique maximal ideal (1 + X), and so p = (2, 1 +

√
11). We must

show that p = (α) for some α = a + b
√
11 ∈ OK . Any such α must satisfy

|a2 − 11b2| = |NormK/Q(α)| = Norm((α)) = 2. A little experimentation

shows that the equality |a2 − 11b2| = 2 holds for α := 3 +
√
11. For this we

then in fact have Norm((α)) = 2 and hence (α) = p. Thus the only ideal of
OK of norm 2 is principal.

If Norm(p) = 3, then likewise p/(3) is an ideal of index 3 of OK/(3) ∼=
F3[X]/(X2 + 1). But since X2 + 1 is irreducible in F3[X], this factor ring is
a field of order 9 and does not possess an ideal of index 3. Thus there exists
no ideal of OK of norm 3.

If Norm(p) = 4, then (4) ⊆ p. For p prime this implies that (2) ⊂ p, which by
comparing indices implies that (2) = p. But we have seen above that OK/(2)
is not a field; hence (2) is not a prime ideal. Thus there is no prime ideal of
norm 4.
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If Norm(p) = 5, then likewise p/(5) is an ideal of index 5 of OK/(5) ∼=
F5[X]/(X2 − 1) = F5[X]/((1 +X)(1−X)). Thus p/(5) corresponds to the
maximal ideal (1±X) and so p = (5, 1±

√
11) for some choice of sign. We must

show that p = (α) for some α = a + b
√
11 ∈ OK . Any such α must satisfy

|a2−11b2| = |NormK/Q(α)| = Norm((α)) = 5. A little experimentation shows

that the equality |a2− 11b2| = 5 holds for α := 4∓
√
11 = 5− (1±

√
11) ∈ p.

For this we then have Norm((α)) = 5, and comparing indices shows that
(α) = p. Thus every ideal of OK of norm 5 is principal.

Finally, there is no prime ideal with Norm(p) = 6, because 6 is not a prime
power.

Case K := Q(
√
−11): Since −11 ≡ 1 mod 4, we have OK = Z[1+

√
−11
2

] ∼=
Z[X]/(X2−X +3) and disc(OK) = −11. Since Q(

√
−11) does not have any

embeddings into R, we have r = 0 and s = 1. By Proposition 4.3.2 from the
lecture, every ideal class in Cl(OK) contains an ideal a ⊆ OK with

Norm(a) ⩽

(
2

π

)s √
| disc(OK)| =

2

π
·
√
11 = 2.1114...

Therefore, it suffices to show that all ideals a of OK of norm ⩽ 2 are principal.

Again Norm(a) = [OK : a] = 1 if and only if a = (1), which is principal.

If Norm(a) = 2, then (2) ⊆ a, and a/(2) is an ideal of index 2 of the factor
ring OK/(2) ∼= F2[X]/(X2 − X + 3). Since X2 − X + 3 = X2 + X + 1 in
F2[X] is irreducible, this factor ring is a field of order 4 and does not possess
an ideal of index 2. Thus there exists no ideal of OK of norm 2, and we are
done.

(b) See Example 12.6.4 in [1]. To factor the ideals (2) and (3), instead of using the
Legendre symbol, one can do the following: We have OK/(2) ∼= F2[X]/(X2)
with (X) the only prime ideal and hence (2) = (2,

√
−14)2. Similarly, we have

OK/(3) ∼= F3[X]/(X2 + 2) which has the prime ideals (1−X) and (1 +X).
Hence (3) = (3, 1 +

√
−14) · (3, 1−

√
−14).

2. (a) Let K be a number field. Let a be a fractional ideal of OK and m ⩾ 1 an
integer such that am = (α). Let L/K be a finite extension containing an
element m

√
α such that m

√
αm = α. Show that aOL = m

√
αOL.

(b) Deduce that there is a finite field extension L/K such that for every fractional
ideal a of OK the ideal aOL is principal.

Solution:

(a) Since am = αOK , it follows that (aOL)
m = amOL = αOL = m

√
αmOL =

(m
√
αOL)

m. Unique factorization of fractional ideals in L now implies that
aOL = m

√
αOL.
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(b) Let h be the class number of K and let a1, . . . , ah denote a system of repre-
sentatives of the elements of the class group. For each i choose αi ∈ K×

such that ahi = (αi) and an element h
√
αi ∈ K̄ such that h

√
αi

h = αi.
Set L := K( h

√
α1 , . . . , h

√
αh ) ⊂ K̄. Then for any fractional ideal a of OK

we have a = αaj for some α ∈ K× and some j; hence by (a) we have
aOL = αajOL = α h

√
αiOL, which is a principal ideal.

3. Consider a prime p ≡ 3 mod (4). It is known that the class number ofK := Q(
√
p )

is odd. Use this fact to prove that there exist a, b ∈ Z such that

|a2 − pb2| = 2.

Hint: Study the ideal p := (2, 1 +
√
p ).

Solution: We compute

p2 =
(
4, 2(1+

√
d ), (1+

√
d )2

)
=

(
4, 2+2

√
d , 1+d+2

√
d
)
=

(
4, 2+2

√
d , d− 1

)
.

Since d − 1 ≡ 2 mod (4), this ideal contains the element gcd(4, d − 1) = 2. As
every generator is divisible by 2, it follows that p2 = (2).

On the one hand this implies that Nm(p)2 = Nm((2)) = 4 and hence Nm(p) = 2.
On the other hand it implies that the corresponding element [p] of the class group
Cl(OK) has order dividing 2. As the class number is odd, it follows that this
element is trivial. Therefore p is a principal ideal.

Now p ≡ 3 mod (4) implies that OK = Z[√p ]. Thus there exist integers a, b with
p = (a+ b

√
p ). Computing the norm yields

2 = Nm(p) = |NmK/Q(a+ b
√
p )| = |(a+ b

√
p )(a− b

√
p )| = |a2 − pb2|.

4. Suppose that the equation y2 = x5 − 2 has a solution with x, y ∈ Z.

(a) Determine the ring of integers and the class number of K := Q(
√
−2).

(b) Show that y is odd and that the two ideals (y ±
√
−2) of OK are coprime.

(c) Prove that y +
√
−2 is a 5-th power in OK .

(d) Deduce a contradiction, proving that the equation has no integer solution.

Solution: (a) Since −2 ̸≡ 1 mod 4, we have OK = Z[
√
−2] and disc(OK) = −8.

Furthermore, we have r = 0 and s = 1. To compute the class number of K, we use
Minkowski’s bound: Every ideal class in Cl(OK) contains an ideal a ⊆ OK with

Norm(a) ⩽
2

π

√
8 = 1.8 . . . < 2.
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Since the only ideal in OK with norm 1 is the unit ideal, it follows that the class
group is trivial and the class number is 1.

(b) Assume, for contradiction, that y is even. Then x5 − 2 = y2 ≡ 0 mod 4.
By checking all residue classes in Z/4Z, the equation x5 − 2 ≡ 0 mod 4 has no
solutions. We obtain a contradiction and hence y is odd.

Next the ideal (y +
√
−2) + (y −

√
−2) contains the element 2

√
−2 and hence its

square −8. But it also contains the integer (y +
√
−2)(y −

√
−2) = y2 + 2, which

is odd, because y is odd. Thus it contains 1, and so the ideals (y +
√
−2) and

(y −
√
−2) are coprime.

(c) Since the class number is 1, the ring OK is a unique factorization domain.
Since x5 = (y +

√
−2)(y −

√
−2), where the factors are coprime, it follows that

y +
√
−2 = uα5 for some α ∈ OK and some unit u ∈ O×

K . But here O×
K = {±1}

has order 2, so we have u = u5 and hence y +
√
−2 = u5α5 = (uα)5.

(d) By (c), we can write y+
√
−2 = (a+ b

√
−2)5 for some a, b ∈ Z. The binomial

expansion yields

y +
√
−2 = (a+ b

√
−2)5 =

(
a5 − 20a3b2 + 20ab4

)
+
(
5a4b− 20a2b3 + 4b5

)√
−2.

Comparing coefficients shows that b(5a4 − 20a2b2 + 4b4) = 1. This implies that
b = ±1 and hence 5a4 − 20a2 + 4 = b.

If b = 1, we have 5a4 − 20a2 + 3 = 0. Thus a2 is a rational root of the quadratic
polynomial 5X2−20X+3. But this polynomial has discriminant (−20)2−4·5·3 =
20 · 17, which is not a square in Q, hence it does not possess any rational root.

If b = −1, we have 5a4 − 20a2 +5 = 0. Dividing by 5, we obtain a4 − 4a2 + 1 = 0.
Thus a2 is a rational root of the quadratic polynomial X2 − 4X + 1. But this
polynomial has discriminant 12, which is not a square in Q, hence it does not
possess any rational root.

In either case we have obtained a contradiction, proving that y2 = x5 − 2 has no
solutions in Z.
P.S.: Is there a direct proof that does not use algebraic number theory?

*5. Let d := −p1 · · · pr with distinct primes pi and K := Q(
√
d ). For any 1 ⩽ i ⩽ r

consider the ideal pi := (pi,
√
d ) of OK , and for any subset I ⊂ {1, . . . , r} consider

the ideal aI :=
∏

i∈I pi.

(a) Show that p2i = (pi).

(b) Deduce that pi is a maximal ideal above pi with norm Nm(pi) = pi.

(c) Show that aI is principal for I = {1, . . . , r}.
(d) Show that aI is not principal for any I ̸= ∅, {1, . . . , r}.
(e) Conclude that the class group Cl(OK) contains a subgroup isomorphic to Fr−1

2 .
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Solution:

(a) By definition we have p2i = (pi,
√
d )2 = (p2i , pi

√
d, d). Here p2i and d lie in Z

and have greatest common divisor pi. Thus pi is a Z-linear combination of p2i
and d, so in particular it lies in p2i . Conversely each of the stated generators
of p2i is an OK-multiple of pi. Therefore p2i = (pi).

(b) The multiplicativity of the norm and the fact that OK is a free Z-module of
rank 2 show that

Nm(pi)
2 = Nm(p2i )

(a)
= Nm((pi)) = [OK : piOK ] = p2i .

Therefore
|OK/pi| = [OK : pi] = Nm(pi) = pi.

Thus OK/pi is a finite ring of prime order pi and therefore isomorphic to Fpi .
As this is a field, the ideal pi is a maximal ideal. Since pi = 0 in Fpi , we must
have piZ ⊂ pi ∩Z. As both are non-zero prime ideals of Z, we have equality,
and so pi is a prime ideal above pi.

For the rest observe that by the multiplicativity of the norm we have

Nm(aI) =
∏
i∈I

Nm(pi)
(b)
=

∏
i∈I

pi =: aI . (∗)

(c) For I = {1, . . . , r} observe first that by construction we have
√
d ∈

⋂r
i=1 pi.

Here the ideals pi are pairwise coprime by (b); hence
⋂r

i=1 pi =
∏r

i=1 pi = aI .

Therefore (
√
d ) ⊂ aI . On the other hand we have Nm(aI) =

∏r
i=1 pi =

|d| by (∗) and Nm((
√
d )) = |NmK/Q(

√
d )| = |d|. Since moreover we have

Nm((
√
d )) = [aI : (

√
d )] · Nm(aI), it follows that aI = (

√
d ).

(d) Suppose that I ̸= ∅, {1, . . . , r} and that aI is principal. We distinguish cases.

i. If d ≡ 2, 3 mod (4), then OK = Z[
√
d ]; hence aI = (a + b

√
d ) for some

a, b ∈ Z. Then by (∗) we have

aI = Nm(aI) = |NmK/Q(a+ b
√
d )| = |a2 − b2d| = a2 + b2|d|.

Here the right hand side is ⩾ |d| if b ̸= 0. But I ̸= {1, . . . , r} implies
that aI < |d|. Thus we must have b = 0 and therefore aI = a2. But by
assumption aI is squarefree and > 1, so we have a contradiction.

ii. If d ≡ 1 mod (4), then OK = Z[1+
√
d

2
]; hence aI = (a+ b1+

√
d

2
) for some

a, b ∈ Z. Then by (∗) we have

aI = Nm(aI) = |NmK/Q(a+ b1+
√
d

2
)| = (a+ b

2
)2 + |d| · ( b

2
)2.
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Multiplying by 4 yields an equation in integers:

4aI = (2a+ b)2 + |d| · b2.

Since aI is squarefree and divides |d|, this equation implies that aI |2a+b.
Dividing by aI thus yields the equation

4 = aI · (2a+b
aI

)2 + |d|
aI

· b2

where each factor is an integer. Here by assumption aI and
|d|
aI

are coprime
integers > 1; hence their sum is ⩾ 5. The equality therefore requires that
one of the summands on the right hand side vanishes. As neither aI nor
|d|
aI

is a square, this yields a contradiction in both cases.

(e) The equality in (a) implies that we have a well-defined group homomorphism

Fr−1
2 → Cl(OK), (mi)i 7→

[r−1∏
i=1

pmi
i

]
.

By (d) its kernel is zero; hence it is injective.
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