D-MATH
Prof. Richard Pink

Solutions 6

Ideal Class Group

1. (a) Show that the number fields $\mathbb{Q}(\sqrt{11})$ and $\mathbb{Q}(\sqrt{-11})$ have class number 1 .
(b) Show that the class group of $\mathbb{Q}(\sqrt{-14})$ is cyclic of order 4 .

Solution: See also Chapter 12.6 in Alaca, Williams [1] to compute the class group.
(a) Case $K:=\mathbb{Q}(\sqrt{11})$: Since $11 \equiv 3 \bmod 4$, we have $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{11}] \cong$ $\mathbb{Z}[X] /\left(X^{2}-11\right)$ and $\operatorname{disc}\left(\mathcal{O}_{K}\right)=4 \cdot 11=44$. Since $11>0$, the field is real quadratic with $r=2$ and $s=0$. By Proposition 4.3.2 from the lecture, every ideal class in $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ contains an ideal $\mathfrak{a} \subseteq \mathcal{O}_{K}$ with

$$
\operatorname{Norm}(\mathfrak{a}) \leqslant\left(\frac{2}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right|}=\sqrt{44}=6.6332 \ldots
$$

Therefore, it suffices to show that all ideals \mathfrak{a} of \mathcal{O}_{K} of norm $\leqslant 6$ are principal. Recall that for any non-zero ideal $\mathfrak{a} \subset \mathcal{O}_{K}$ we have $\operatorname{Norm}(\mathfrak{a})=\left[\mathcal{O}_{K}: \mathfrak{a}\right]$. In particular $\operatorname{Norm}(\mathfrak{a})=1$ if and only if $\mathfrak{a}=(1)$, which is principal. Moreover, any prime divisor $\mathfrak{p} \mid \mathfrak{a}$ satisfies $\operatorname{Norm}(\mathfrak{p}) \mid \operatorname{Norm}(\mathfrak{a})$. As any non-zero ideal is a product of prime ideals, it thus suffices to show that every prime ideal \mathfrak{p} of \mathcal{O}_{K} of norm $\leqslant 6$ is principal. For any such \mathfrak{p}, the norm is the order of the residue field and therefore a prime power.
If $\operatorname{Norm}(\mathfrak{p})=2$, then $(2) \subseteq \mathfrak{p}$, and $\mathfrak{p} /(2)$ is an ideal of index 2 of the factor ring $\mathcal{O}_{K} /(2) \cong \mathbb{F}_{2}[X] /\left(X^{2}+1\right)=\mathbb{F}_{2}[X] /(1+X)^{2}$. Thus $\mathfrak{p} /(2)$ corresponds to the unique maximal ideal $(1+X)$, and so $\mathfrak{p}=(2,1+\sqrt{11})$. We must show that $\mathfrak{p}=(\alpha)$ for some $\alpha=a+b \sqrt{11} \in \mathcal{O}_{K}$. Any such α must satisfy $\left|a^{2}-11 b^{2}\right|=\left|\operatorname{Norm}_{K / \mathbb{Q}}(\alpha)\right|=\operatorname{Norm}((\alpha))=2$. A little experimentation shows that the equality $\left|a^{2}-11 b^{2}\right|=2$ holds for $\alpha:=3+\sqrt{11}$. For this we then in fact have $\operatorname{Norm}((\alpha))=2$ and hence $(\alpha)=\mathfrak{p}$. Thus the only ideal of \mathcal{O}_{K} of norm 2 is principal.
If $\operatorname{Norm}(\mathfrak{p})=3$, then likewise $\mathfrak{p} /(3)$ is an ideal of index 3 of $\mathcal{O}_{K} /(3) \cong$ $\mathbb{F}_{3}[X] /\left(X^{2}+1\right)$. But since $X^{2}+1$ is irreducible in $\mathbb{F}_{3}[X]$, this factor ring is a field of order 9 and does not possess an ideal of index 3 . Thus there exists no ideal of \mathcal{O}_{K} of norm 3.
If $\operatorname{Norm}(\mathfrak{p})=4$, then $(4) \subseteq \mathfrak{p}$. For \mathfrak{p} prime this implies that $(2) \subset \mathfrak{p}$, which by comparing indices implies that $(2)=\mathfrak{p}$. But we have seen above that $\mathcal{O}_{K} /(2)$ is not a field; hence (2) is not a prime ideal. Thus there is no prime ideal of norm 4.

If $\operatorname{Norm}(\mathfrak{p})=5$, then likewise $\mathfrak{p} /(5)$ is an ideal of index 5 of $\mathcal{O}_{K} /(5) \cong$ $\mathbb{F}_{5}[X] /\left(X^{2}-1\right)=\mathbb{F}_{5}[X] /((1+X)(1-X))$. Thus $\mathfrak{p} /(5)$ corresponds to the maximal ideal $(1 \pm X)$ and so $\mathfrak{p}=(5,1 \pm \sqrt{11})$ for some choice of sign. We must show that $\mathfrak{p}=(\alpha)$ for some $\alpha=a+b \sqrt{11} \in \mathcal{O}_{K}$. Any such α must satisfy $\left|a^{2}-11 b^{2}\right|=\left|\operatorname{Norm}_{K / \mathbb{Q}}(\alpha)\right|=\operatorname{Norm}((\alpha))=5$. A little experimentation shows that the equality $\left|a^{2}-11 b^{2}\right|=5$ holds for $\alpha:=4 \mp \sqrt{11}=5-(1 \pm \sqrt{11}) \in \mathfrak{p}$. For this we then have $\operatorname{Norm}((\alpha))=5$, and comparing indices shows that $(\alpha)=\mathfrak{p}$. Thus every ideal of \mathcal{O}_{K} of norm 5 is principal.
Finally, there is no prime ideal with $\operatorname{Norm}(\mathfrak{p})=6$, because 6 is not a prime power.
Case $K:=\mathbb{Q}(\sqrt{-11})$: Since $-11 \equiv 1 \bmod 4$, we have $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \cong$ $\mathbb{Z}[X] /\left(X^{2}-X+3\right)$ and $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-11$. Since $\mathbb{Q}(\sqrt{-11})$ does not have any embeddings into \mathbb{R}, we have $r=0$ and $s=1$. By Proposition 4.3.2 from the lecture, every ideal class in $\operatorname{Cl}\left(\mathcal{O}_{K}\right)$ contains an ideal $\mathfrak{a} \subseteq \mathcal{O}_{K}$ with

$$
\operatorname{Norm}(\mathfrak{a}) \leqslant\left(\frac{2}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right|}=\frac{2}{\pi} \cdot \sqrt{11}=2.1114 \ldots
$$

Therefore, it suffices to show that all ideals \mathfrak{a} of \mathcal{O}_{K} of norm $\leqslant 2$ are principal. Again $\operatorname{Norm}(\mathfrak{a})=\left[\mathcal{O}_{K}: \mathfrak{a}\right]=1$ if and only if $\mathfrak{a}=(1)$, which is principal.
If $\operatorname{Norm}(\mathfrak{a})=2$, then $(2) \subseteq \mathfrak{a}$, and $\mathfrak{a} /(2)$ is an ideal of index 2 of the factor ring $\mathcal{O}_{K} /(2) \cong \mathbb{F}_{2}[X] /\left(X^{2}-X+3\right)$. Since $X^{2}-X+3=X^{2}+X+1$ in $\mathbb{F}_{2}[X]$ is irreducible, this factor ring is a field of order 4 and does not possess an ideal of index 2 . Thus there exists no ideal of \mathcal{O}_{K} of norm 2, and we are done.
(b) See Example 12.6.4 in [1]. To factor the ideals (2) and (3), instead of using the Legendre symbol, one can do the following: We have $\mathcal{O}_{K} /(2) \cong \mathbb{F}_{2}[X] /\left(X^{2}\right)$ with (X) the only prime ideal and hence $(2)=(2, \sqrt{-14})^{2}$. Similarly, we have $\mathcal{O}_{K} /(3) \cong \mathbb{F}_{3}[X] /\left(X^{2}+2\right)$ which has the prime ideals $(1-X)$ and $(1+X)$. Hence $(3)=(3,1+\sqrt{-14}) \cdot(3,1-\sqrt{-14})$.
2. (a) Let K be a number field. Let \mathfrak{a} be a fractional ideal of \mathcal{O}_{K} and $m \geqslant 1$ an integer such that $\mathfrak{a}^{m}=(\alpha)$. Let L / K be a finite extension containing an element $\sqrt[m]{\alpha}$ such that $\sqrt[m]{\alpha}{ }^{m}=\alpha$. Show that $\mathfrak{a} \mathcal{O}_{L}=\sqrt[m]{\alpha} \mathcal{O}_{L}$.
(b) Deduce that there is a finite field extension L / K such that for every fractional ideal \mathfrak{a} of \mathcal{O}_{K} the ideal $\mathfrak{a} \mathcal{O}_{L}$ is principal.

Solution:

(a) Since $\mathfrak{a}^{m}=\alpha \mathcal{O}_{K}$, it follows that $\left(\mathfrak{a} \mathcal{O}_{L}\right)^{m}=\mathfrak{a}^{m} \mathcal{O}_{L}=\alpha \mathcal{O}_{L}=\sqrt[m]{\alpha}{ }^{m} \mathcal{O}_{L}=$ $\left(\sqrt[m]{\alpha} \mathcal{O}_{L}\right)^{m}$. Unique factorization of fractional ideals in L now implies that $\mathfrak{a} \mathcal{O}_{L}=\sqrt[m]{\alpha} \mathcal{O}_{L}$.
(b) Let h be the class number of K and let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{h}$ denote a system of representatives of the elements of the class group. For each i choose $\alpha_{i} \in K^{\times}$ such that $\mathfrak{a}_{i}^{h}=\left(\alpha_{i}\right)$ and an element $\sqrt[h]{\alpha_{i}} \in \bar{K}$ such that $\sqrt[h]{\alpha_{i}}{ }^{h}=\alpha_{i}$. Set $L:=K\left(\sqrt[h]{\alpha_{1}}, \ldots, \sqrt[h]{\alpha_{h}}\right) \subset \bar{K}$. Then for any fractional ideal \mathfrak{a} of \mathcal{O}_{K} we have $\mathfrak{a}=\alpha \mathfrak{a}_{j}$ for some $\alpha \in K^{\times}$and some j; hence by (a) we have $\mathfrak{a} \mathcal{O}_{L}=\alpha \mathfrak{a}_{j} \mathcal{O}_{L}=\alpha \sqrt[h]{\alpha_{i}} \mathcal{O}_{L}$, which is a principal ideal.
3. Consider a prime $p \equiv 3 \bmod (4)$. It is known that the class number of $K:=\mathbb{Q}(\sqrt{p})$ is odd. Use this fact to prove that there exist $a, b \in \mathbb{Z}$ such that

$$
\left|a^{2}-p b^{2}\right|=2 .
$$

Hint: Study the ideal $\mathfrak{p}:=(2,1+\sqrt{p})$.
Solution: We compute
$\mathfrak{p}^{2}=\left(4,2(1+\sqrt{d}),(1+\sqrt{d})^{2}\right)=(4,2+2 \sqrt{d}, 1+d+2 \sqrt{d})=(4,2+2 \sqrt{d}, d-1)$.
Since $d-1 \equiv 2 \bmod (4)$, this ideal contains the element $\operatorname{gcd}(4, d-1)=2$. As every generator is divisible by 2 , it follows that $\mathfrak{p}^{2}=(2)$.
On the one hand this implies that $\operatorname{Nm}(\mathfrak{p})^{2}=\operatorname{Nm}((2))=4$ and hence $\operatorname{Nm}(\mathfrak{p})=2$. On the other hand it implies that the corresponding element [p] of the class group $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ has order dividing 2. As the class number is odd, it follows that this element is trivial. Therefore \mathfrak{p} is a principal ideal.
Now $p \equiv 3 \bmod (4)$ implies that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{p}]$. Thus there exist integers a, b with $\mathfrak{p}=(a+b \sqrt{p})$. Computing the norm yields

$$
2=\operatorname{Nm}(\mathfrak{p})=\left|\operatorname{Nm}_{K / \mathbb{Q}}(a+b \sqrt{p})\right|=|(a+b \sqrt{p})(a-b \sqrt{p})|=\left|a^{2}-p b^{2}\right|
$$

4. Suppose that the equation $y^{2}=x^{5}-2$ has a solution with $x, y \in \mathbb{Z}$.
(a) Determine the ring of integers and the class number of $K:=\mathbb{Q}(\sqrt{-2})$.
(b) Show that y is odd and that the two ideals $(y \pm \sqrt{-2})$ of \mathcal{O}_{K} are coprime.
(c) Prove that $y+\sqrt{-2}$ is a 5 -th power in \mathcal{O}_{K}.
(d) Deduce a contradiction, proving that the equation has no integer solution.

Solution: (a) Since $-2 \not \equiv 1 \bmod 4$, we have $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-2}]$ and $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-8$. Furthermore, we have $r=0$ and $s=1$. To compute the class number of K, we use Minkowski's bound: Every ideal class in $\operatorname{Cl}\left(\mathcal{O}_{K}\right)$ contains an ideal $\mathfrak{a} \subseteq \mathcal{O}_{K}$ with

$$
\operatorname{Norm}(\mathfrak{a}) \leqslant \frac{2}{\pi} \sqrt{8}=1.8 \ldots<2
$$

Since the only ideal in \mathcal{O}_{K} with norm 1 is the unit ideal, it follows that the class group is trivial and the class number is 1 .
(b) Assume, for contradiction, that y is even. Then $x^{5}-2=y^{2} \equiv 0 \bmod 4$. By checking all residue classes in $\mathbb{Z} / 4 \mathbb{Z}$, the equation $x^{5}-2 \equiv 0 \bmod 4$ has no solutions. We obtain a contradiction and hence y is odd.
Next the ideal $(y+\sqrt{-2})+(y-\sqrt{-2})$ contains the element $2 \sqrt{-2}$ and hence its square -8 . But it also contains the integer $(y+\sqrt{-2})(y-\sqrt{-2})=y^{2}+2$, which is odd, because y is odd. Thus it contains 1 , and so the ideals $(y+\sqrt{-2})$ and ($y-\sqrt{-2}$) are coprime.
(c) Since the class number is 1 , the ring \mathcal{O}_{K} is a unique factorization domain. Since $x^{5}=(y+\sqrt{-2})(y-\sqrt{-2})$, where the factors are coprime, it follows that $y+\sqrt{-2}=u \alpha^{5}$ for some $\alpha \in \mathcal{O}_{K}$ and some unit $u \in \mathcal{O}_{K}^{\times}$. But here $\mathcal{O}_{K}^{\times}=\{ \pm 1\}$ has order 2, so we have $u=u^{5}$ and hence $y+\sqrt{-2}=u^{5} \alpha^{5}=(u \alpha)^{5}$.
(d) By (c), we can write $y+\sqrt{-2}=(a+b \sqrt{-2})^{5}$ for some $a, b \in \mathbb{Z}$. The binomial expansion yields

$$
y+\sqrt{-2}=(a+b \sqrt{-2})^{5}=\left(a^{5}-20 a^{3} b^{2}+20 a b^{4}\right)+\left(5 a^{4} b-20 a^{2} b^{3}+4 b^{5}\right) \sqrt{-2} .
$$

Comparing coefficients shows that $b\left(5 a^{4}-20 a^{2} b^{2}+4 b^{4}\right)=1$. This implies that $b= \pm 1$ and hence $5 a^{4}-20 a^{2}+4=b$.
If $b=1$, we have $5 a^{4}-20 a^{2}+3=0$. Thus a^{2} is a rational root of the quadratic polynomial $5 X^{2}-20 X+3$. But this polynomial has discriminant $(-20)^{2}-4 \cdot 5 \cdot 3=$ $20 \cdot 17$, which is not a square in \mathbb{Q}, hence it does not possess any rational root.
If $b=-1$, we have $5 a^{4}-20 a^{2}+5=0$. Dividing by 5 , we obtain $a^{4}-4 a^{2}+1=0$. Thus a^{2} is a rational root of the quadratic polynomial $X^{2}-4 X+1$. But this polynomial has discriminant 12 , which is not a square in \mathbb{Q}, hence it does not possess any rational root.
In either case we have obtained a contradiction, proving that $y^{2}=x^{5}-2$ has no solutions in \mathbb{Z}.
P.S.: Is there a direct proof that does not use algebraic number theory?
*5. Let $d:=-p_{1} \cdots p_{r}$ with distinct primes p_{i} and $K:=\mathbb{Q}(\sqrt{d})$. For any $1 \leqslant i \leqslant r$ consider the ideal $\mathfrak{p}_{i}:=\left(p_{i}, \sqrt{d}\right)$ of \mathcal{O}_{K}, and for any subset $I \subset\{1, \ldots, r\}$ consider the ideal $\mathfrak{a}_{I}:=\prod_{i \in I} \mathfrak{p}_{i}$.
(a) Show that $\mathfrak{p}_{i}^{2}=\left(p_{i}\right)$.
(b) Deduce that \mathfrak{p}_{i} is a maximal ideal above p_{i} with norm $\operatorname{Nm}\left(\mathfrak{p}_{i}\right)=p_{i}$.
(c) Show that \mathfrak{a}_{I} is principal for $I=\{1, \ldots, r\}$.
(d) Show that \mathfrak{a}_{I} is not principal for any $I \neq \varnothing,\{1, \ldots, r\}$.
(e) Conclude that the class group $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ contains a subgroup isomorphic to \mathbb{F}_{2}^{r-1}.

Solution:

(a) By definition we have $\mathfrak{p}_{i}^{2}=\left(p_{i}, \sqrt{d}\right)^{2}=\left(p_{i}^{2}, p_{i} \sqrt{d}, d\right)$. Here p_{i}^{2} and d lie in \mathbb{Z} and have greatest common divisor p_{i}. Thus p_{i} is a \mathbb{Z}-linear combination of p_{i}^{2} and d, so in particular it lies in \mathfrak{p}_{i}^{2}. Conversely each of the stated generators of \mathfrak{p}_{i}^{2} is an \mathcal{O}_{K}-multiple of p_{i}. Therefore $\mathfrak{p}_{i}^{2}=\left(p_{i}\right)$.
(b) The multiplicativity of the norm and the fact that \mathcal{O}_{K} is a free \mathbb{Z}-module of rank 2 show that

$$
\operatorname{Nm}\left(\mathfrak{p}_{i}\right)^{2}=\operatorname{Nm}\left(\mathfrak{p}_{i}^{2}\right) \stackrel{(a)}{=} \operatorname{Nm}\left(\left(p_{i}\right)\right)=\left[\mathcal{O}_{K}: p_{i} \mathcal{O}_{K}\right]=p_{i}^{2}
$$

Therefore

$$
\left|\mathcal{O}_{K} / \mathfrak{p}_{i}\right|=\left[\mathcal{O}_{K}: \mathfrak{p}_{i}\right]=\operatorname{Nm}\left(\mathfrak{p}_{i}\right)=p_{i} .
$$

Thus $\mathcal{O}_{K} / \mathfrak{p}_{i}$ is a finite ring of prime order p_{i} and therefore isomorphic to $\mathbb{F}_{p_{i}}$. As this is a field, the ideal \mathfrak{p}_{i} is a maximal ideal. Since $p_{i}=0$ in $\mathbb{F}_{p_{i}}$, we must have $p_{i} \mathbb{Z} \subset \mathfrak{p}_{i} \cap \mathbb{Z}$. As both are non-zero prime ideals of \mathbb{Z}, we have equality, and so \mathfrak{p}_{i} is a prime ideal above p_{i}.

For the rest observe that by the multiplicativity of the norm we have

$$
\begin{equation*}
\operatorname{Nm}\left(\mathfrak{a}_{I}\right)=\prod_{i \in I} \operatorname{Nm}\left(\mathfrak{p}_{i}\right) \stackrel{(b)}{=} \prod_{i \in I} p_{i}=: a_{I} \tag{*}
\end{equation*}
$$

(c) For $I=\{1, \ldots, r\}$ observe first that by construction we have $\sqrt{d} \in \bigcap_{i=1}^{r} \mathfrak{p}_{i}$. Here the ideals \mathfrak{p}_{i} are pairwise coprime by (b); hence $\bigcap_{i=1}^{r} \mathfrak{p}_{i}=\prod_{i=1}^{r} \mathfrak{p}_{i}=\mathfrak{a}_{I}$. Therefore $(\sqrt{d}) \subset \mathfrak{a}_{I}$. On the other hand we have $\operatorname{Nm}\left(\mathfrak{a}_{I}\right)=\prod_{i=1}^{r} p_{i}=$ $|d|$ by $(*)$ and $\operatorname{Nm}((\sqrt{d}))=\left|\operatorname{Nm}_{K / \mathbb{Q}}(\sqrt{d})\right|=|d|$. Since moreover we have $\operatorname{Nm}((\sqrt{d}))=\left[\mathfrak{a}_{I}:(\sqrt{d})\right] \cdot \operatorname{Nm}\left(\mathfrak{a}_{I}\right)$, it follows that $\mathfrak{a}_{I}=(\sqrt{d})$.
(d) Suppose that $I \neq \varnothing,\{1, \ldots, r\}$ and that \mathfrak{a}_{I} is principal. We distinguish cases.
i. If $d \equiv 2,3 \bmod (4)$, then $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$; hence $\mathfrak{a}_{I}=(a+b \sqrt{d})$ for some $a, b \in \mathbb{Z}$. Then by ($*$) we have

$$
a_{I}=\operatorname{Nm}\left(\mathfrak{a}_{I}\right)=\left|\operatorname{Nm}_{K / \mathbb{Q}}(a+b \sqrt{d})\right|=\left|a^{2}-b^{2} d\right|=a^{2}+b^{2}|d| .
$$

Here the right hand side is $\geqslant|d|$ if $b \neq 0$. But $I \neq\{1, \ldots, r\}$ implies that $a_{I}<|d|$. Thus we must have $b=0$ and therefore $a_{I}=a^{2}$. But by assumption a_{I} is squarefree and >1, so we have a contradiction.
ii. If $d \equiv 1 \bmod (4)$, then $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$; hence $\mathfrak{a}_{I}=\left(a+b \frac{1+\sqrt{d}}{2}\right)$ for some $a, b \in \mathbb{Z}$. Then by ($*$) we have

$$
a_{I}=\operatorname{Nm}\left(\mathfrak{a}_{I}\right)=\left|\operatorname{Nm}_{K / \mathbb{Q}}\left(a+b \frac{1+\sqrt{d}}{2}\right)\right|=\left(a+\frac{b}{2}\right)^{2}+|d| \cdot\left(\frac{b}{2}\right)^{2} .
$$

Multiplying by 4 yields an equation in integers:

$$
4 a_{I}=(2 a+b)^{2}+|d| \cdot b^{2}
$$

Since a_{I} is squarefree and divides $|d|$, this equation implies that $a_{I} \mid 2 a+b$. Dividing by a_{I} thus yields the equation

$$
4=a_{I} \cdot\left(\frac{2 a+b}{a_{I}}\right)^{2}+\frac{|d|}{a_{I}} \cdot b^{2}
$$

where each factor is an integer. Here by assumption a_{I} and $\frac{|d|}{a_{I}}$ are coprime integers >1; hence their sum is $\geqslant 5$. The equality therefore requires that one of the summands on the right hand side vanishes. As neither a_{I} nor $\frac{|d|}{a_{I}}$ is a square, this yields a contradiction in both cases.
(e) The equality in (a) implies that we have a well-defined group homomorphism

$$
\mathbb{F}_{2}^{r-1} \rightarrow \mathrm{Cl}\left(\mathcal{O}_{K}\right), \quad\left(m_{i}\right)_{i} \mapsto\left[\prod_{i=1}^{r-1} \mathfrak{p}_{i}^{m_{i}}\right]
$$

By (d) its kernel is zero; hence it is injective.

References

[1] S. Alaca, K. S. Williams, Introductory to Algebraic Number Theory. Cambridge University Press. 2004.

