Number Theory I

Exercise sheet 7

CLASS NUMBER, DISCRIMINANT BOUNDS, UNITS

- *1. Let $K := \mathbb{Q}(\sqrt{-\ell})$ for a prime $\ell \equiv 3 \mod (4)$. Thus complex conjugation is the non-trivial Galois automorphism of K/\mathbb{Q} .
 - (a) Show that every fractional ideal \mathfrak{b} with $\overline{\mathfrak{b}} = \mathfrak{b}$ is principal.
 - (b) Deduce that for every fractional ideal \mathfrak{a} we have $[\bar{\mathfrak{a}}] = [\mathfrak{a}^{-1}]$ in $\operatorname{Cl}(\mathcal{O}_K)$.
 - (c) Prove that for any $a \in K^{\times}$ with $\operatorname{Nm}_{K/\mathbb{Q}}(a) = 1$ there exists $b \in K^{\times}$ with $a = \overline{b}b^{-1}$. (*Hilbert 90. Hint:* Try $b = \overline{a} + 1$.)
 - (d) Show that any fractional ideal \mathfrak{a} with \mathfrak{a}^2 principal is equivalent to a fractional ideal \mathfrak{b} with $\overline{\mathfrak{b}} = \mathfrak{b}$.
 - (e) Conclude that the class number of \mathcal{O}_K is odd.
- 2. Determine all totally real cubic number fields with discriminant ± 4 . *Hint:* Use a computer algebra system for the actual computation.
- 3. Work out an analogue of Proposition 5.4.2 in the case $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$.
- 4. Prove without number theory that the equation $a^2 b^2 d = -1$ has infinitely many solutions $(a, b) \in \mathbb{Z}^2$ for d = 2, but none for d = 3. Explain the answer with algebraic number theory.
- 5. (a) For any number field K, a subring $\mathcal{O} \subset \mathcal{O}_K$ of finite index is called an *order* in \mathcal{O}_K . For any such order prove that \mathcal{O}^{\times} is a subgroup of finite index in \mathcal{O}_K^{\times} .
 - (b) Consider a squarefree integer d > 1 with $d \equiv 1 \mod (4)$, so that $K := \mathbb{Q}(\sqrt{d})$ has the ring of integers $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$. Explain the precise relation between $\mathbb{Z}[\sqrt{d}]^{\times}$ and \mathcal{O}_K^{\times} .
- 6. (a) Determine the ring of integers of $K := \mathbb{Q}(\sqrt{5}, i)$.
 - (b) Determine \mathcal{O}_F^{\times} for the subfield $F := \mathbb{Q}(\sqrt{5})$.
 - (c) Find a fundamental unit of \mathcal{O}_K^{\times} .
 - (d) Show that $|\mu(K)| = 4$ and write down \mathcal{O}_K^{\times} .