
D-MATH Number Theory I HS 2023
Prof. Richard Pink

Solutions 7

Class number, Discriminant bounds, Units

*1. Let K := Q(
√
−ℓ ) for a prime ℓ ≡ 3 mod (4). Thus complex conjugation is the

non-trivial Galois automorphism of K/Q.

(a) Show that every fractional ideal b with b̄ = b is principal.

(b) Deduce that for every fractional ideal a we have [ā] = [a−1] in Cl(OK).

(c) Prove that for any a ∈ K× with NmK/Q(a) = 1 there exists b ∈ K× with
a = b̄b−1. (Hilbert 90. Hint: Try b = ā+ 1.)

(d) Show that any fractional ideal a with a2 principal is equivalent to a fractional
ideal b with b̄ = b.

(e) Conclude that the class number of OK is odd.

Solution: By constructionK has discriminant−ℓ and the ring of integers Z[
√
−ℓ ].

(a) Consider the prime factorization b =
∏r

i=1 p
µi

i with distinct maximal ideals pi
and exponents µi ∈ Z. Then b̄ =

∏r
i=1 p̄

µi

i is the prime factorization of b̄. By
the uniqueness of the prime factorization it follows that every factor p̄µi

i must
be equal to p

µj

j for some j. As any product and any quotient of principal
ideals is principal, it suffices to prove (a) whenever b = p = p̄ or b = p · p̄ for
a maximal ideal p of OK .

Any maximal ideal p of OK lies above a rational prime p. If this prime is inert
in OK , we have p = (p) = p̄ and are done. If it is split, we have pp′ = (p)
for another maximal ideal p′. As complex conjugation transitively permutes
the primes of OK above p, it then follows that p′ = p̄; hence pp̄ = (p) is
principal. Finally, Example 6.2.6 shows that ℓ is the only rational prime that
is ramified in OK . The only prime p above ℓ therefore satisfies p2 = (ℓ).
But (

√
−ℓ )2 = (−ℓ) = (ℓ) and unique factorization of ideals shows that then

p = (
√
−ℓ ); hence we are done in all cases.

(b) For any fractional ideal a the ideal b := aā satisfies b̄ = b and is therefore
principal by (a). Thus [ā] is the inverse of [a] in Cl(OK) and therefore equal
to [a−1].

(c) By assumption we have aā = NmK/Q(a) = 1. Thus b := ā + 1 satisfies
ab = aā + a = 1 + a = 1 + ā = b̄. Thus we are done except if b = 0, that is,
if a = −1. But in that case b :=

√
−ℓ does the job.

1



(d) That a2 is principal means that [a−1] = [a] in Cl(OK). By (b) we thus have
[ā] = [a] and therefore ā = aa for some element a ∈ a. Taking norms this
implies that

Nm(a) = Nm(ā) = |NmK/Q(a)| · Nm(a)

and therefore |NmK/Q(a)| = 1. But since K is imaginary quadratic, we have
NmK/Q(a) = aā > 0; so we must have NmK/Q(a) = 1. Choose b ∈ K× with
a = b̄b−1 as in (c). Then ā = aa = b̄b−1a implies that b := b−1a = b̄.

(e) If the class number is even, the group Cl(OK) possesses an element of precise
order 2. This is represented by a non-principal fractional ideal a for which a2

is principal. By (d) this is equivalent to a fractional ideal b with b = b̄. But
then b is principal by (a); hence a is principal as well, and we have obtained
a contradiction. Thus the class number is odd.

2. Determine all totally real cubic number fields with discriminant ±4.

Hint: Use a computer algebra system for the actual computation.

Solution: Let K be such a field with the three real embeddings σ1, σ2, σ3. Then
by Theorem 4.2.2 for every t >

√
|dK | = 2 there exists an element x ∈ OK ∖ {0}

with |σ1(x)| < t and |σ2(x)|, |σ3(x)| < 1. As NmK/Q(x) ∈ Z ∖ {0} we then have∏3
i=1 |σi(x)| ⩾ 1 and therefore |σ1(x)| > 1. In particular σ1(x) ̸= σ2(x) and

therefore x ̸∈ Q. As [K/Q] = 3 it follows that K = Q(x). Thus

f(X) := X3 + aX2 + bX + c :=
3∏

i=1

(X − σi(x))

is the minimal polynomial of x over Q. The conditions on |σi(x)| now imply that
|a| < 2 + t and |b| < 1 + 2t and |c| < t. As a, b, c are integers, taking t just a
little bit larger than 2 we then have |a| ⩽ 4 and |b| ⩽ 5 and |c| ⩽ 2. Since f must
be irreducible, we also have c ̸= 0. After possibly replacing x by −x we can then
make 1 ⩽ c ⩽ 2.

It remains to study the 9 · 11 · 2 = 198 possibilities for a, b, c. For this recall
that by Proposition 1.7.4 the discriminant of f is the discriminant of Z[x] and by
Proposition 3.2.1 (b) this is equal to dK · [OK : Z[x]]2 = ±4 · [OK : Z[x]]2. Thus
the discriminant of f must be ±4 times a non-zero square. On the other hand
the discriminant is

∏
1⩽i<j⩽3(σi(x) − σj(x))

2 with all terms real; hence it is > 0.
Thus the discriminant of f must be 4 times a non-zero square. Using a computer
algebra system we compute the discriminant in all 198 cases and find only one that
satisfies this condition, namely the polynomialX3−2X2−X+2 = (X−2)(X2−1).
But that is reducible. Therefore there is no totally real cubic number field with
discriminant ±4.
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Aliter: By Theorem 4.4.2 we have√
|dK | ⩾

27

6
∗
(π
4

)3/2

≈ 3.13 > 2.

Therefore there is no cubic number field with discriminant ±4.

3. Work out an analogue of Proposition 5.4.2 in the case OK = Z[1+
√
d

2
].

Solution: In this case OK consists of the real numbers of the form a + b
√
d for

all a, b ∈ 1
2
Z with a ≡ b mod (2). If such a number is a unit, then so is its galois

conjugate a− b
√
d, and so their product a2− b2d is a unit in Z and therefore equal

to ±1. Conversely, if a2− b2d = ±1, then a+ b
√
d is a unit in OK with the inverse

±(a− b
√
d). Thus

O×
K =

{
a+ b

√
d
∣∣ a, b ∈ 1

2
Z, a ≡ b mod (2), a2 − b2d = ±1

}
.

Next, any unit u ∈ O×
K ∖ {±1} gives rise to four distinct units ±u±1, one lying in

each of the intervals between −∞,−1, 0, 1,∞. Writing u = a+ b
√
d , these are the

elements ±a ± b
√
d with all four possibilities of signs, the largest of which being

|a|+ |b|
√
d. Thus

O×
K ∩ R>1 =

{
a+ b

√
d
∣∣ a, b ∈ 1

2
Z>0, a ≡ b mod (2), a2 − b2d = ±1

}
.

The unique fundamental unit ε > 1 is therefore the element a+ b
√
d ∈ O×

K ∩R>1

as above with the smallest value for a.

4. Prove without number theory that the equation a2− b2d = −1 has infinitely many
solutions (a, b) ∈ Z2 for d = 2, but none for d = 3. Explain the answer with
algebraic number theory.

Solution: Elementary solution using renaissance arithmetic only: For d = 2
we find the solution (a, b) = (1, 1) by trial and error. Given a solution (a, b) with
a, b > 0, a direct computation shows that (a3+6ab2, 3a2b+2b2) is another solution
with strictly larger coefficients. Thus there exist infinitely many solutions. For
d = 3 the equation implies that a2 ≡ 2 mod (3), which is not solvable in Z/3Z.
Explanation: Let K := Q(

√
d ) ⊂ R. In both cases we have d ̸≡ 1 mod (4) and

hence OK = Z[
√
d ]. A general element has norm NormK/Q(a+ b

√
d ) = a2 − b2d,

so we want to find all elements of norm −1. Any such element is a unit in O×
K .

From the lecture we know that O×
K = {±1} × εZ for a fundamental unit ε > 1.

Since NormK/Q is multiplicative and NormK/Q(−1) = 1, we deduce that

{
a+b

√
d ∈ OK

∣∣ a2−b2d = −1
}

=

{
{±εm | m ∈ Z odd} if NormK/Q(ε) = −1,

∅ if NormK/Q(ε) = 1.
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Moreover, by Proposition 5.4.2 we have ε = a+ b
√
d for a, b ∈ Z>0 with a2− b2d =

±1 and a minimal, which we can find by trial and error.

For d = 2 the element 1 +
√
2 is a fundamental unit with NormK/Q(1 +

√
2 ) =

12 − 12 · 2 = −1; hence we are in the first case.

For d = 3 the element 2 +
√
3 is a unit with NormK/Q(2 +

√
3 ) = 22 − 12 · 3 = 1.

On the other hand OK has discriminant 4d = 12; hence by Proposition 5.4.5 of

the lecture the fundamental unit ε > 1 satisfies ε ⩾
√
12+

√
12−4

2
=

√
3 +

√
2. Since

(
√
3 +

√
2 )2 > 2 +

√
3 > 1, we cannot have 2 +

√
3 = εk with an integer k > 1, so

2 +
√
3 = ε is already a fundamental unit. Therefore we are in the second case.

5. (a) For any number field K, a subring O ⊂ OK of finite index is called an order
in OK . For any such order prove that O× is a subgroup of finite index in O×

K .

(b) Consider a squarefree integer d > 1 with d ≡ 1 mod (4), so that K := Q(
√
d )

has the ring of integers OK = Z[1+
√
d

2
]. Explain the precise relation between

Z[
√
d ]× and O×

K .

Solution: (a) Any ring homomorphism induces a homomorphism for the groups
of units. Thus the embedding O ↪→ OK induces an embedding O× ↪→ O×

K

of groups. Next set m := [OK : O]. Then mOK ⊂ O, so we have an em-
bedding O/mOK ↪→ OK/mOK and hence a homomorphism of abelian groups
(O/mOK)

× ↪→ (OK/mOK)
×. From this we deduce that O× is the kernel of the

composite homomorphism

O×
K → (OK/mOK)

× ↠ (OK/mOK)
× /

(O/mOK)
×.

Since the target is a finite group, it follows that [O×
K : O×] is finite.

(b) Here we have m = 2, and the minimal polynomial of ω := 1+
√
d

2
over Z is

P (X) := (X − 1+
√
d

2
)(X − 1−

√
d

2
) = X2 −X + 1−d

4
.

Hence OK
∼= Z[X]/(P (X)).

Assume first that d ≡ 1 mod (8). Then P (X) ≡ X(X − 1) mod (2) and hence
OK/2OK

∼= F2[X]/(X(X − 1)) ∼= (F2)
2. Thus (OK/2OK)

× = 1, which by the
construction in (a) implies that O× = O×

K .

In the other case we have d ≡ 5 mod (8). Then P (X) ≡ X2 + X + 1 mod (2),
which is irreducible in F2[X]. Thus OK/2OK

∼= F2[X]/(X2 +X + 1) is a field of
order 4, and so (OK/2OK)

× is a cyclic group of order 3. From the construction in
(a) it follows that Z[

√
d ]× is a subgroup of O×

K of index dividing 3.

In either case this shows that Z[
√
d ]× is a subgroup of O×

K of index 1 or 3. The
case d ≡ 1 mod (8) shows that the index 1 actually occurs, and the example of
d = 13 explained in the lecture course shows that the index 3 also occurs.
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6. (a) Determine the ring of integers of K := Q(
√
5, i).

(b) Determine O×
F for the subfield F := Q(

√
5).

(c) Find a fundamental unit of O×
K .

(d) Show that |µ(K)| = 4 and write down O×
K .

Solution:

(a) Consider the subfields F := Q(
√
5) and F ′ := Q(i) = Q(

√
−1). Since 5 ≡

1 mod 4 and −1 ̸≡ 1 mod 4, their discriminants are disc(OF ) = 5 and
disc(OF ′) = −4 and hence coprime. Furthermore, the fields F and F ′ are
linearly disjoint, since [FF ′/Q] = [K/Q] = 4 = [F/Q] · [F ′/Q]. Therefore

Theorem 1.8.3 implies that OK
∼= OF ⊗Z OF ′ ∼= Z[1+

√
5

2
, i]. In particular a

Z-basis of OK is 1, 1+
√
5

2
, i, i1+

√
5

2
.

(b) By Proposition 5.4.2, the element ε := a + b
√
5 ∈ OF with minimal a, b ∈

1
2
Z>0 such that NormF/Q(ε) = ±1 is a fundamental unit in O×

F . By a direct

calculation, we verify that ε := 1+
√
5

2
already has norm −1 and hence is a

fundamental unit. It follows that O×
F = {±1} × εZ.

(c) The field K has (r, s) = (0, 2) and hence O×
K = µ(K) × ε̃Z for some funda-

mental unit ε̃ ∈ O×
K . In view of (b) it follows that ζε̃n = ε±1 for some n ⩾ 1

and ζ ∈ µ(K). After possibly replacing ε̃ with ε̃−1 and ζ with ζ−1, we may
assume that ζε̃n = ε. Writing NormK/F (ε̃) = ±εk with k ∈ Z, we deduce
that

ε2 = NormK/F (ε) = NormK/F (ζε̃
n) = ±NormK/F (ε̃)

n = ±(±εk)n,

which implies that kn = 2. Suppose that n = 2 and hence k = 1. Write
ε̃ = a+ b1+

√
5

2
+ ci+ di1+

√
5

2
with a, b, c, d ∈ Z. Then

±1+
√
5

2
= ±ε = NormK/F (ε̃) = ε̃¯̃ε = (a2+b2+c2+d2)+(2ab+b2+2cd+d2)1+

√
5

2
.

Comparing coefficients implies that a2 + b2 + c2 + d2 = 0 and hence a =
b = c = d = 0. This contradicts the fact that ε̃ ̸= 0. Therefore n = 1 and
ε̃ = ζ−1ε is also a fundamental unit in O×

K . Since the fundamental unit of K
is only determined up multiplication with an element of µ(K) and taking its
inverse, we conclude that ε is a fundamental unit in O×

K .

(d) Let ζ be a generator of µ(K) and let n be the order of ζ. Then [Q(ζ)/Q] =
φ(n), where φ(·) denotes the Euler φ-function, and this divides [K/Q] = 4.
On the other hand, since i ∈ K, we have n = 2km with m odd and k ⩾ 2
and hence φ(n) = (2k − 2k−1)φ(m) = 2k−1φ(m). Together this leaves only
the possibilities n = 4, 8, 12.

If n = 8, we have ζ = ±1±i√
2

and hence Q(
√
2) = Q(ζ + ζ̄) ⊂ K.

If n = 12, we have ζ4 = −1±
√
−3

2
and hence Q(

√
−3) = Q(ζ4) ⊂ K.
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But the extension K/Q is galois with a non-cyclic Galois group of order 4;
hence by Galois theory it contains precisely three different quadratic subfields.
Since Q(

√
5) and Q(

√
−1) and Q(i

√
5) = Q(

√
−5) are all contained in K

and non-isomorphic by the classification of quadratic number fields, these are
precisely all quadratic subfields of K. Again by the classification of quadratic
number fields, none of them is isomorphic to Q(

√
2) or Q(

√
−3). Thus the

cases n = 8, 12 are impossible, leaving only n = 4.

In conclusion, we have |µ(K)| = 4 and O×
K = {±1,±i} × (1+

√
5

2
)Z.
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