Solutions 7

Class number, Discriminant bounds, Units

*1. Let $K:=\mathbb{Q}(\sqrt{-\ell})$ for a prime $\ell \equiv 3 \bmod$ (4). Thus complex conjugation is the non-trivial Galois automorphism of K / \mathbb{Q}.
(a) Show that every fractional ideal \mathfrak{b} with $\overline{\mathfrak{b}}=\mathfrak{b}$ is principal.
(b) Deduce that for every fractional ideal \mathfrak{a} we have $[\overline{\mathfrak{a}}]=\left[\mathfrak{a}^{-1}\right]$ in $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$.
(c) Prove that for any $a \in K^{\times}$with $\operatorname{Nm}_{K / \mathbb{Q}}(a)=1$ there exists $b \in K^{\times}$with $a=\bar{b} b^{-1}$. (Hilbert 90. Hint: Try $b=\bar{a}+1$.)
(d) Show that any fractional ideal \mathfrak{a} with \mathfrak{a}^{2} principal is equivalent to a fractional ideal \mathfrak{b} with $\overline{\mathfrak{b}}=\mathfrak{b}$.
(e) Conclude that the class number of \mathcal{O}_{K} is odd.

Solution: By construction K has discriminant $-\ell$ and the ring of integers $\mathbb{Z}[\sqrt{-\ell}]$.
(a) Consider the prime factorization $\mathfrak{b}=\prod_{i=1}^{r} \mathfrak{p}_{i}^{\mu_{i}}$ with distinct maximal ideals \mathfrak{p}_{i} and exponents $\mu_{i} \in \mathbb{Z}$. Then $\overline{\mathfrak{b}}=\prod_{i=1}^{r} \overline{\mathfrak{p}}_{i}^{\mu_{i}}$ is the prime factorization of $\overline{\mathfrak{b}}$. By the uniqueness of the prime factorization it follows that every factor $\overline{\mathfrak{p}}_{i}^{\mu_{i}}$ must be equal to $\mathfrak{p}_{j}^{\mu_{j}}$ for some j. As any product and any quotient of principal ideals is principal, it suffices to prove (a) whenever $\mathfrak{b}=\mathfrak{p}=\overline{\mathfrak{p}}$ or $\mathfrak{b}=\mathfrak{p} \cdot \overline{\mathfrak{p}}$ for a maximal ideal \mathfrak{p} of \mathcal{O}_{K}.
Any maximal ideal \mathfrak{p} of \mathcal{O}_{K} lies above a rational prime p. If this prime is inert in \mathcal{O}_{K}, we have $\mathfrak{p}=(p)=\overline{\mathfrak{p}}$ and are done. If it is split, we have $\mathfrak{p p}{ }^{\prime}=(p)$ for another maximal ideal \mathfrak{p}^{\prime}. As complex conjugation transitively permutes the primes of \mathcal{O}_{K} above p, it then follows that $\mathfrak{p}^{\prime}=\overline{\mathfrak{p}}$; hence $\mathfrak{p p}=(p)$ is principal. Finally, Example 6.2 .6 shows that ℓ is the only rational prime that is ramified in \mathcal{O}_{K}. The only prime \mathfrak{p} above ℓ therefore satisfies $\mathfrak{p}^{2}=(\ell)$. But $(\sqrt{-\ell})^{2}=(-\ell)=(\ell)$ and unique factorization of ideals shows that then $\mathfrak{p}=(\sqrt{-\ell})$; hence we are done in all cases.
(b) For any fractional ideal \mathfrak{a} the ideal $\mathfrak{b}:=\mathfrak{a} \overline{\mathfrak{a}}$ satisfies $\overline{\mathfrak{b}}=\mathfrak{b}$ and is therefore principal by (a). Thus $[\overline{\mathfrak{a}}]$ is the inverse of $[\mathfrak{a}]$ in $\operatorname{Cl}\left(\mathcal{O}_{K}\right)$ and therefore equal to $\left[\mathfrak{a}^{-1}\right]$.
(c) By assumption we have $a \bar{a}=\operatorname{Nm}_{K / \mathbb{Q}}(a)=1$. Thus $b:=\bar{a}+1$ satisfies $a b=a \bar{a}+a=1+a=\overline{1+\bar{a}}=\bar{b}$. Thus we are done except if $b=0$, that is, if $a=-1$. But in that case $b:=\sqrt{-\ell}$ does the job.
(d) That \mathfrak{a}^{2} is principal means that $\left[\mathfrak{a}^{-1}\right]=[\mathfrak{a}]$ in $\operatorname{Cl}\left(\mathcal{O}_{K}\right)$. By (b) we thus have $[\overline{\mathfrak{a}}]=[\mathfrak{a}]$ and therefore $\overline{\mathfrak{a}}=a \mathfrak{a}$ for some element $a \in \mathfrak{a}$. Taking norms this implies that

$$
\operatorname{Nm}(\mathfrak{a})=\operatorname{Nm}(\overline{\mathfrak{a}})=\left|\operatorname{Nm}_{K / \mathbb{Q}}(a)\right| \cdot \operatorname{Nm}(\mathfrak{a})
$$

and therefore $\left|\operatorname{Nm}_{K / \mathbb{Q}}(a)\right|=1$. But since K is imaginary quadratic, we have $\operatorname{Nm}_{K / \mathbb{Q}}(a)=a \bar{a}>0$; so we must have $\operatorname{Nm}_{K / \mathbb{Q}}(a)=1$. Choose $b \in K^{\times}$with $a=\bar{b} b^{-1}$ as in (c). Then $\overline{\mathfrak{a}}=a \mathfrak{a}=\bar{b} b^{-1} \mathfrak{a}$ implies that $\mathfrak{b}:=b^{-1} \mathfrak{a}=\overline{\mathfrak{b}}$.
(e) If the class number is even, the group $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ possesses an element of precise order 2 . This is represented by a non-principal fractional ideal \mathfrak{a} for which \mathfrak{a}^{2} is principal. By (d) this is equivalent to a fractional ideal \mathfrak{b} with $\mathfrak{b}=\overline{\mathfrak{b}}$. But then \mathfrak{b} is principal by (a); hence \mathfrak{a} is principal as well, and we have obtained a contradiction. Thus the class number is odd.
2. Determine all totally real cubic number fields with discriminant ± 4.

Hint: Use a computer algebra system for the actual computation.
Solution: Let K be such a field with the three real embeddings $\sigma_{1}, \sigma_{2}, \sigma_{3}$. Then by Theorem 4.2.2 for every $t>\sqrt{\left|d_{K}\right|}=2$ there exists an element $x \in \mathcal{O}_{K} \backslash\{0\}$ with $\left|\sigma_{1}(x)\right|<t$ and $\left|\sigma_{2}(x)\right|,\left|\sigma_{3}(x)\right|<1$. As $\mathrm{Nm}_{K / \mathbb{Q}}(x) \in \mathbb{Z} \backslash\{0\}$ we then have $\prod_{i=1}^{3}\left|\sigma_{i}(x)\right| \geqslant 1$ and therefore $\left|\sigma_{1}(x)\right|>1$. In particular $\sigma_{1}(x) \neq \sigma_{2}(x)$ and therefore $x \notin \mathbb{Q}$. As $[K / \mathbb{Q}]=3$ it follows that $K=\mathbb{Q}(x)$. Thus

$$
f(X):=X^{3}+a X^{2}+b X+c:=\prod_{i=1}^{3}\left(X-\sigma_{i}(x)\right)
$$

is the minimal polynomial of x over \mathbb{Q}. The conditions on $\left|\sigma_{i}(x)\right|$ now imply that $|a|<2+t$ and $|b|<1+2 t$ and $|c|<t$. As a, b, c are integers, taking t just a little bit larger than 2 we then have $|a| \leqslant 4$ and $|b| \leqslant 5$ and $|c| \leqslant 2$. Since f must be irreducible, we also have $c \neq 0$. After possibly replacing x by $-x$ we can then make $1 \leqslant c \leqslant 2$.
It remains to study the $9 \cdot 11 \cdot 2=198$ possibilities for a, b, c. For this recall that by Proposition 1.7.4 the discriminant of f is the discriminant of $\mathbb{Z}[x]$ and by Proposition 3.2.1 (b) this is equal to $d_{K} \cdot\left[\mathcal{O}_{K}: \mathbb{Z}[x]\right]^{2}= \pm 4 \cdot\left[\mathcal{O}_{K}: \mathbb{Z}[x]\right]^{2}$. Thus the discriminant of f must be ± 4 times a non-zero square. On the other hand the discriminant is $\prod_{1 \leqslant i<j \leqslant 3}\left(\sigma_{i}(x)-\sigma_{j}(x)\right)^{2}$ with all terms real; hence it is >0. Thus the discriminant of f must be 4 times a non-zero square. Using a computer algebra system we compute the discriminant in all 198 cases and find only one that satisfies this condition, namely the polynomial $X^{3}-2 X^{2}-X+2=(X-2)\left(X^{2}-1\right)$. But that is reducible. Therefore there is no totally real cubic number field with discriminant ± 4.

Aliter: By Theorem 4.4.2 we have

$$
\sqrt{\left|d_{K}\right|} \geqslant \frac{27}{6} *\left(\frac{\pi}{4}\right)^{3 / 2} \approx 3.13>2
$$

Therefore there is no cubic number field with discriminant ± 4.
3. Work out an analogue of Proposition 5.4.2 in the case $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.

Solution: In this case \mathcal{O}_{K} consists of the real numbers of the form $a+b \sqrt{d}$ for all $a, b \in \frac{1}{2} \mathbb{Z}$ with $a \equiv b \bmod$ (2). If such a number is a unit, then so is its galois conjugate $a-b \sqrt{d}$, and so their product $a^{2}-b^{2} d$ is a unit in \mathbb{Z} and therefore equal to ± 1. Conversely, if $a^{2}-b^{2} d= \pm 1$, then $a+b \sqrt{d}$ is a unit in \mathcal{O}_{K} with the inverse $\pm(a-b \sqrt{d})$. Thus

$$
\mathcal{O}_{K}^{\times}=\left\{a+b \sqrt{d} \mid a, b \in \frac{1}{2} \mathbb{Z}, a \equiv b \bmod (2), a^{2}-b^{2} d= \pm 1\right\} .
$$

Next, any unit $u \in \mathcal{O}_{K}^{\times} \backslash\{ \pm 1\}$ gives rise to four distinct units $\pm u^{ \pm 1}$, one lying in each of the intervals between $-\infty,-1,0,1, \infty$. Writing $u=a+b \sqrt{d}$, these are the elements $\pm a \pm b \sqrt{d}$ with all four possibilities of signs, the largest of which being $|a|+|b| \sqrt{d}$. Thus

$$
\mathcal{O}_{K}^{\times} \cap \mathbb{R}^{>1}=\left\{a+b \sqrt{d} \mid a, b \in \frac{1}{2} \mathbb{Z}^{>0}, a \equiv b \bmod (2), a^{2}-b^{2} d= \pm 1\right\}
$$

The unique fundamental unit $\varepsilon>1$ is therefore the element $a+b \sqrt{d} \in \mathcal{O}_{K}^{\times} \cap \mathbb{R}^{>1}$ as above with the smallest value for a.
4. Prove without number theory that the equation $a^{2}-b^{2} d=-1$ has infinitely many solutions $(a, b) \in \mathbb{Z}^{2}$ for $d=2$, but none for $d=3$. Explain the answer with algebraic number theory.
Solution: Elementary solution using renaissance arithmetic only: For $d=2$ we find the solution $(a, b)=(1,1)$ by trial and error. Given a solution (a, b) with $a, b>0$, a direct computation shows that $\left(a^{3}+6 a b^{2}, 3 a^{2} b+2 b^{2}\right)$ is another solution with strictly larger coefficients. Thus there exist infinitely many solutions. For $d=3$ the equation implies that $a^{2} \equiv 2 \bmod (3)$, which is not solvable in $\mathbb{Z} / 3 \mathbb{Z}$.
Explanation: Let $K:=\mathbb{Q}(\sqrt{d}) \subset \mathbb{R}$. In both cases we have $d \not \equiv 1 \bmod (4)$ and hence $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$. A general element has norm $\operatorname{Norm}_{K / \mathbb{Q}}(a+b \sqrt{d})=a^{2}-b^{2} d$, so we want to find all elements of norm -1 . Any such element is a unit in \mathcal{O}_{K}^{\times}. From the lecture we know that $\mathcal{O}_{K}^{\times}=\{ \pm 1\} \times \varepsilon^{\mathbb{Z}}$ for a fundamental unit $\varepsilon>1$. Since $\operatorname{Norm}_{K / \mathbb{Q}}$ is multiplicative and $\operatorname{Norm}_{K / \mathbb{Q}}(-1)=1$, we deduce that

$$
\left\{a+b \sqrt{d} \in \mathcal{O}_{K} \mid a^{2}-b^{2} d=-1\right\}=\left\{\begin{array}{cl}
\left\{ \pm \varepsilon^{m} \mid m \in \mathbb{Z} \text { odd }\right\} & \text { if } \operatorname{Norm}_{K / \mathbb{Q}}(\varepsilon)=-1 \\
\varnothing & \text { if } \operatorname{Norm}_{K / \mathbb{Q}}(\varepsilon)=1
\end{array}\right.
$$

Moreover, by Proposition 5.4.2 we have $\varepsilon=a+b \sqrt{d}$ for $a, b \in \mathbb{Z}^{>0}$ with $a^{2}-b^{2} d=$ ± 1 and a minimal, which we can find by trial and error.
For $d=2$ the element $1+\sqrt{2}$ is a fundamental unit with $\operatorname{Norm}_{K / \mathbb{Q}}(1+\sqrt{2})=$ $1^{2}-1^{2} \cdot 2=-1$; hence we are in the first case.
For $d=3$ the element $2+\sqrt{3}$ is a unit with $\operatorname{Norm}_{K / \mathbb{Q}}(2+\sqrt{3})=2^{2}-1^{2} \cdot 3=1$. On the other hand \mathcal{O}_{K} has discriminant $4 d=12$; hence by Proposition 5.4.5 of the lecture the fundamental unit $\varepsilon>1$ satisfies $\varepsilon \geqslant \frac{\sqrt{12}+\sqrt{12-4}}{2}=\sqrt{3}+\sqrt{2}$. Since $(\sqrt{3}+\sqrt{2})^{2}>2+\sqrt{3}>1$, we cannot have $2+\sqrt{3}=\varepsilon^{k}$ with an integer $k>1$, so $2+\sqrt{3}=\varepsilon$ is already a fundamental unit. Therefore we are in the second case.
5. (a) For any number field K, a subring $\mathcal{O} \subset \mathcal{O}_{K}$ of finite index is called an order in \mathcal{O}_{K}. For any such order prove that \mathcal{O}^{\times}is a subgroup of finite index in \mathcal{O}_{K}^{\times}.
(b) Consider a squarefree integer $d>1$ with $d \equiv 1 \bmod (4)$, so that $K:=\mathbb{Q}(\sqrt{d})$ has the ring of integers $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$. Explain the precise relation between $\mathbb{Z}[\sqrt{d}]^{\times}$and \mathcal{O}_{K}^{\times}.
Solution: (a) Any ring homomorphism induces a homomorphism for the groups of units. Thus the embedding $\mathcal{O} \hookrightarrow \mathcal{O}_{K}$ induces an embedding $\mathcal{O}^{\times} \hookrightarrow \mathcal{O}_{K}^{\times}$ of groups. Next set $m:=\left[\mathcal{O}_{K}: \mathcal{O}\right]$. Then $m \mathcal{O}_{K} \subset \mathcal{O}$, so we have an embedding $\mathcal{O} / m \mathcal{O}_{K} \hookrightarrow \mathcal{O}_{K} / m \mathcal{O}_{K}$ and hence a homomorphism of abelian groups $\left(\mathcal{O} / m \mathcal{O}_{K}\right)^{\times} \hookrightarrow\left(\mathcal{O}_{K} / m \mathcal{O}_{K}\right)^{\times}$. From this we deduce that \mathcal{O}^{\times}is the kernel of the composite homomorphism

$$
\mathcal{O}_{K}^{\times} \rightarrow\left(\mathcal{O}_{K} / m \mathcal{O}_{K}\right)^{\times} \rightarrow\left(\mathcal{O}_{K} / m \mathcal{O}_{K}\right)^{\times} /\left(\mathcal{O} / m \mathcal{O}_{K}\right)^{\times}
$$

Since the target is a finite group, it follows that $\left[\mathcal{O}_{K}^{\times}: \mathcal{O}^{\times}\right]$is finite.
(b) Here we have $m=2$, and the minimal polynomial of $\omega:=\frac{1+\sqrt{d}}{2}$ over \mathbb{Z} is

$$
P(X):=\left(X-\frac{1+\sqrt{d}}{2}\right)\left(X-\frac{1-\sqrt{d}}{2}\right)=X^{2}-X+\frac{1-d}{4} .
$$

Hence $\mathcal{O}_{K} \cong \mathbb{Z}[X] /(P(X))$.
Assume first that $d \equiv 1 \bmod$ (8). Then $P(X) \equiv X(X-1) \bmod (2)$ and hence $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong \mathbb{F}_{2}[X] /(X(X-1)) \cong\left(\mathbb{F}_{2}\right)^{2}$. Thus $\left(\mathcal{O}_{K} / 2 \mathcal{O}_{K}\right)^{\times}=1$, which by the construction in (a) implies that $\mathcal{O}^{\times}=\mathcal{O}_{K}^{\times}$.
In the other case we have $d \equiv 5 \bmod (8)$. Then $P(X) \equiv X^{2}+X+1 \bmod (2)$, which is irreducible in $\mathbb{F}_{2}[X]$. Thus $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong \mathbb{F}_{2}[X] /\left(X^{2}+X+1\right)$ is a field of order 4 , and so $\left(\mathcal{O}_{K} / 2 \mathcal{O}_{K}\right)^{\times}$is a cyclic group of order 3. From the construction in (a) it follows that $\mathbb{Z}[\sqrt{d}]^{\times}$is a subgroup of \mathcal{O}_{K}^{\times}of index dividing 3.

In either case this shows that $\mathbb{Z}[\sqrt{d}]^{\times}$is a subgroup of \mathcal{O}_{K}^{\times}of index 1 or 3 . The case $d \equiv 1 \bmod (8)$ shows that the index 1 actually occurs, and the example of $d=13$ explained in the lecture course shows that the index 3 also occurs.
6. (a) Determine the ring of integers of $K:=\mathbb{Q}(\sqrt{5}, i)$.
(b) Determine \mathcal{O}_{F}^{\times}for the subfield $F:=\mathbb{Q}(\sqrt{5})$.
(c) Find a fundamental unit of \mathcal{O}_{K}^{\times}.
(d) Show that $|\mu(K)|=4$ and write down \mathcal{O}_{K}^{\times}.

Solution:
(a) Consider the subfields $F:=\mathbb{Q}(\sqrt{5})$ and $F^{\prime}:=\mathbb{Q}(i)=\mathbb{Q}(\sqrt{-1})$. Since $5 \equiv$ $1 \bmod 4$ and $-1 \not \equiv 1 \bmod 4$, their discriminants are $\operatorname{disc}\left(\mathcal{O}_{F}\right)=5$ and $\operatorname{disc}\left(\mathcal{O}_{F^{\prime}}\right)=-4$ and hence coprime. Furthermore, the fields F and F^{\prime} are linearly disjoint, since $\left[F F^{\prime} / \mathbb{Q}\right]=[K / \mathbb{Q}]=4=[F / \mathbb{Q}] \cdot\left[F^{\prime} / \mathbb{Q}\right]$. Therefore Theorem 1.8.3 implies that $\mathcal{O}_{K} \cong \mathcal{O}_{F} \otimes_{\mathbb{Z}} \mathcal{O}_{F^{\prime}} \cong \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}, i\right]$. In particular a \mathbb{Z}-basis of \mathcal{O}_{K} is $1, \frac{1+\sqrt{5}}{2}, i, i \frac{1+\sqrt{5}}{2}$.
(b) By Proposition 5.4.2, the element $\varepsilon:=a+b \sqrt{5} \in \mathcal{O}_{F}$ with minimal $a, b \in$ $\frac{1}{2} \mathbb{Z}^{>0}$ such that $\operatorname{Norm}_{F / \mathbb{Q}}(\varepsilon)= \pm 1$ is a fundamental unit in \mathcal{O}_{F}^{\times}. By a direct calculation, we verify that $\varepsilon:=\frac{1+\sqrt{5}}{2}$ already has norm -1 and hence is a fundamental unit. It follows that $\mathcal{O}_{F}^{2}=\{ \pm 1\} \times \varepsilon^{\mathbb{Z}}$.
(c) The field K has $(r, s)=(0,2)$ and hence $\mathcal{O}_{K}^{\times}=\mu(K) \times \tilde{\varepsilon}^{\mathbb{Z}}$ for some fundamental unit $\tilde{\varepsilon} \in \mathcal{O}_{K}^{\times}$. In view of (b) it follows that $\zeta \tilde{\varepsilon}^{n}=\varepsilon^{ \pm 1}$ for some $n \geqslant 1$ and $\zeta \in \mu(K)$. After possibly replacing $\tilde{\varepsilon}$ with $\tilde{\varepsilon}^{-1}$ and ζ with ζ^{-1}, we may assume that $\zeta \tilde{\varepsilon}^{n}=\varepsilon$. Writing $\operatorname{Norm}_{K / F}(\tilde{\varepsilon})= \pm \varepsilon^{k}$ with $k \in \mathbb{Z}$, we deduce that

$$
\varepsilon^{2}=\operatorname{Norm}_{K / F}(\varepsilon)=\operatorname{Norm}_{K / F}\left(\zeta \widetilde{\varepsilon}^{n}\right)= \pm \operatorname{Norm}_{K / F}(\tilde{\varepsilon})^{n}= \pm\left(\pm \varepsilon^{k}\right)^{n},
$$

which implies that $k n=2$. Suppose that $n=2$ and hence $k=1$. Write $\tilde{\varepsilon}=a+b \frac{1+\sqrt{5}}{2}+c i+d i \frac{1+\sqrt{5}}{2}$ with $a, b, c, d \in \mathbb{Z}$. Then
$\pm \frac{1+\sqrt{5}}{2}= \pm \varepsilon=\operatorname{Norm}_{K / F}(\tilde{\varepsilon})=\tilde{\varepsilon} \tilde{\tilde{\varepsilon}}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+\left(2 a b+b^{2}+2 c d+d^{2}\right) \frac{1+\sqrt{5}}{2}$.
Comparing coefficients implies that $a^{2}+b^{2}+c^{2}+d^{2}=0$ and hence $a=$ $b=c=d=0$. This contradicts the fact that $\tilde{\varepsilon} \neq 0$. Therefore $n=1$ and $\tilde{\varepsilon}=\zeta^{-1} \varepsilon$ is also a fundamental unit in \mathcal{O}_{K}^{\times}. Since the fundamental unit of K is only determined up multiplication with an element of $\mu(K)$ and taking its inverse, we conclude that ε is a fundamental unit in \mathcal{O}_{K}^{\times}.
(d) Let ζ be a generator of $\mu(K)$ and let n be the order of ζ. Then $[\mathbb{Q}(\zeta) / \mathbb{Q}]=$ $\varphi(n)$, where $\varphi(\cdot)$ denotes the Euler φ-function, and this divides $[K / \mathbb{Q}]=4$. On the other hand, since $i \in K$, we have $n=2^{k} m$ with m odd and $k \geqslant 2$ and hence $\varphi(n)=\left(2^{k}-2^{k-1}\right) \varphi(m)=2^{k-1} \varphi(m)$. Together this leaves only the possibilities $n=4,8,12$.
If $n=8$, we have $\zeta=\frac{ \pm 1 \pm i}{\sqrt{2}}$ and hence $\mathbb{Q}(\sqrt{2})=\mathbb{Q}(\zeta+\bar{\zeta}) \subset K$.
If $n=12$, we have $\zeta^{4}=\frac{-1 \pm \sqrt{-3}}{2}$ and hence $\mathbb{Q}(\sqrt{-3})=\mathbb{Q}\left(\zeta^{4}\right) \subset K$.

But the extension K / \mathbb{Q} is galois with a non-cyclic Galois group of order 4; hence by Galois theory it contains precisely three different quadratic subfields. Since $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(i \sqrt{5})=\mathbb{Q}(\sqrt{-5})$ are all contained in K and non-isomorphic by the classification of quadratic number fields, these are precisely all quadratic subfields of K. Again by the classification of quadratic number fields, none of them is isomorphic to $\mathbb{Q}(\sqrt{2})$ or $\mathbb{Q}(\sqrt{-3})$. Thus the cases $n=8,12$ are impossible, leaving only $n=4$.
In conclusion, we have $|\mu(K)|=4$ and $\mathcal{O}_{K}^{\times}=\{ \pm 1, \pm i\} \times\left(\frac{1+\sqrt{5}}{2}\right)^{\mathbb{Z}}$.

