Number Theory I

Solutions 7

CLASS NUMBER, DISCRIMINANT BOUNDS, UNITS

- *1. Let $K := \mathbb{Q}(\sqrt{-\ell})$ for a prime $\ell \equiv 3 \mod (4)$. Thus complex conjugation is the non-trivial Galois automorphism of K/\mathbb{Q} .
 - (a) Show that every fractional ideal \mathfrak{b} with $\mathfrak{b} = \mathfrak{b}$ is principal.
 - (b) Deduce that for every fractional ideal \mathfrak{a} we have $[\bar{\mathfrak{a}}] = [\mathfrak{a}^{-1}]$ in $\operatorname{Cl}(\mathcal{O}_K)$.
 - (c) Prove that for any $a \in K^{\times}$ with $\operatorname{Nm}_{K/\mathbb{Q}}(a) = 1$ there exists $b \in K^{\times}$ with $a = \overline{b}b^{-1}$. (*Hilbert 90. Hint:* Try $b = \overline{a} + 1$.)
 - (d) Show that any fractional ideal \mathfrak{a} with \mathfrak{a}^2 principal is equivalent to a fractional ideal \mathfrak{b} with $\overline{\mathfrak{b}} = \mathfrak{b}$.
 - (e) Conclude that the class number of \mathcal{O}_K is odd.

Solution: By construction K has discriminant $-\ell$ and the ring of integers $\mathbb{Z}[\sqrt{-\ell}]$.

(a) Consider the prime factorization $\mathfrak{b} = \prod_{i=1}^{r} \mathfrak{p}_{i}^{\mu_{i}}$ with distinct maximal ideals \mathfrak{p}_{i} and exponents $\mu_{i} \in \mathbb{Z}$. Then $\bar{\mathfrak{b}} = \prod_{i=1}^{r} \bar{\mathfrak{p}}_{i}^{\mu_{i}}$ is the prime factorization of $\bar{\mathfrak{b}}$. By the uniqueness of the prime factorization it follows that every factor $\bar{\mathfrak{p}}_{i}^{\mu_{i}}$ must be equal to $\mathfrak{p}_{j}^{\mu_{j}}$ for some j. As any product and any quotient of principal ideals is principal, it suffices to prove (a) whenever $\mathfrak{b} = \mathfrak{p} = \bar{\mathfrak{p}}$ or $\mathfrak{b} = \mathfrak{p} \cdot \bar{\mathfrak{p}}$ for a maximal ideal \mathfrak{p} of \mathcal{O}_{K} .

Any maximal ideal \mathfrak{p} of \mathcal{O}_K lies above a rational prime p. If this prime is inert in \mathcal{O}_K , we have $\mathfrak{p} = (p) = \bar{\mathfrak{p}}$ and are done. If it is split, we have $\mathfrak{pp}' = (p)$ for another maximal ideal \mathfrak{p}' . As complex conjugation transitively permutes the primes of \mathcal{O}_K above p, it then follows that $\mathfrak{p}' = \bar{\mathfrak{p}}$; hence $\mathfrak{p}\bar{\mathfrak{p}} = (p)$ is principal. Finally, Example 6.2.6 shows that ℓ is the only rational prime that is ramified in \mathcal{O}_K . The only prime \mathfrak{p} above ℓ therefore satisfies $\mathfrak{p}^2 = (\ell)$. But $(\sqrt{-\ell})^2 = (-\ell) = (\ell)$ and unique factorization of ideals shows that then $\mathfrak{p} = (\sqrt{-\ell})$; hence we are done in all cases.

- (b) For any fractional ideal \mathfrak{a} the ideal $\mathfrak{b} := \mathfrak{a}\overline{\mathfrak{a}}$ satisfies $\overline{\mathfrak{b}} = \mathfrak{b}$ and is therefore principal by (a). Thus $[\overline{\mathfrak{a}}]$ is the inverse of $[\mathfrak{a}]$ in $\operatorname{Cl}(\mathcal{O}_K)$ and therefore equal to $[\mathfrak{a}^{-1}]$.
- (c) By assumption we have $a\bar{a} = \operatorname{Nm}_{K/\mathbb{Q}}(a) = 1$. Thus $b := \bar{a} + 1$ satisfies $ab = a\bar{a} + a = 1 + a = \overline{1 + \bar{a}} = \bar{b}$. Thus we are done except if b = 0, that is, if a = -1. But in that case $b := \sqrt{-\ell}$ does the job.

(d) That \mathfrak{a}^2 is principal means that $[\mathfrak{a}^{-1}] = [\mathfrak{a}]$ in $\operatorname{Cl}(\mathcal{O}_K)$. By (b) we thus have $[\bar{\mathfrak{a}}] = [\mathfrak{a}]$ and therefore $\bar{\mathfrak{a}} = a\mathfrak{a}$ for some element $a \in \mathfrak{a}$. Taking norms this implies that

$$\operatorname{Nm}(\mathfrak{a}) = \operatorname{Nm}(\overline{\mathfrak{a}}) = |\operatorname{Nm}_{K/\mathbb{Q}}(a)| \cdot \operatorname{Nm}(\mathfrak{a})$$

and therefore $|\operatorname{Nm}_{K/\mathbb{Q}}(a)| = 1$. But since K is imaginary quadratic, we have $\operatorname{Nm}_{K/\mathbb{Q}}(a) = a\bar{a} > 0$; so we must have $\operatorname{Nm}_{K/\mathbb{Q}}(a) = 1$. Choose $b \in K^{\times}$ with $a = \bar{b}b^{-1}$ as in (c). Then $\bar{\mathfrak{a}} = a\mathfrak{a} = \bar{b}b^{-1}\mathfrak{a}$ implies that $\mathfrak{b} := b^{-1}\mathfrak{a} = \bar{\mathfrak{b}}$.

- (e) If the class number is even, the group $\operatorname{Cl}(\mathcal{O}_K)$ possesses an element of precise order 2. This is represented by a non-principal fractional ideal \mathfrak{a} for which \mathfrak{a}^2 is principal. By (d) this is equivalent to a fractional ideal \mathfrak{b} with $\mathfrak{b} = \overline{\mathfrak{b}}$. But then \mathfrak{b} is principal by (a); hence \mathfrak{a} is principal as well, and we have obtained a contradiction. Thus the class number is odd.
- 2. Determine all totally real cubic number fields with discriminant ± 4 .

Hint: Use a computer algebra system for the actual computation.

Solution: Let K be such a field with the three real embeddings $\sigma_1, \sigma_2, \sigma_3$. Then by Theorem 4.2.2 for every $t > \sqrt{|d_K|} = 2$ there exists an element $x \in \mathcal{O}_K \setminus \{0\}$ with $|\sigma_1(x)| < t$ and $|\sigma_2(x)|, |\sigma_3(x)| < 1$. As $\operatorname{Nm}_{K/\mathbb{Q}}(x) \in \mathbb{Z} \setminus \{0\}$ we then have $\prod_{i=1}^3 |\sigma_i(x)| \ge 1$ and therefore $|\sigma_1(x)| > 1$. In particular $\sigma_1(x) \ne \sigma_2(x)$ and therefore $x \notin \mathbb{Q}$. As $[K/\mathbb{Q}] = 3$ it follows that $K = \mathbb{Q}(x)$. Thus

$$f(X) := X^3 + aX^2 + bX + c := \prod_{i=1}^3 (X - \sigma_i(x))$$

is the minimal polynomial of x over \mathbb{Q} . The conditions on $|\sigma_i(x)|$ now imply that |a| < 2 + t and |b| < 1 + 2t and |c| < t. As a, b, c are integers, taking t just a little bit larger than 2 we then have $|a| \leq 4$ and $|b| \leq 5$ and $|c| \leq 2$. Since f must be irreducible, we also have $c \neq 0$. After possibly replacing x by -x we can then make $1 \leq c \leq 2$.

It remains to study the $9 \cdot 11 \cdot 2 = 198$ possibilities for a, b, c. For this recall that by Proposition 1.7.4 the discriminant of f is the discriminant of $\mathbb{Z}[x]$ and by Proposition 3.2.1 (b) this is equal to $d_K \cdot [\mathcal{O}_K : \mathbb{Z}[x]]^2 = \pm 4 \cdot [\mathcal{O}_K : \mathbb{Z}[x]]^2$. Thus the discriminant of f must be ± 4 times a non-zero square. On the other hand the discriminant is $\prod_{1 \leq i < j \leq 3} (\sigma_i(x) - \sigma_j(x))^2$ with all terms real; hence it is > 0. Thus the discriminant of f must be 4 times a non-zero square. Using a computer algebra system we compute the discriminant in all 198 cases and find only one that satisfies this condition, namely the polynomial $X^3 - 2X^2 - X + 2 = (X-2)(X^2-1)$. But that is reducible. Therefore there is no totally real cubic number field with discriminant ± 4 . Aliter: By Theorem 4.4.2 we have

$$\sqrt{|d_K|} \ge \frac{27}{6} * \left(\frac{\pi}{4}\right)^{3/2} \approx 3.13 > 2.$$

Therefore there is no cubic number field with discriminant ± 4 .

3. Work out an analogue of Proposition 5.4.2 in the case $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$.

Solution: In this case \mathcal{O}_K consists of the real numbers of the form $a + b\sqrt{d}$ for all $a, b \in \frac{1}{2}\mathbb{Z}$ with $a \equiv b \mod (2)$. If such a number is a unit, then so is its galois conjugate $a - b\sqrt{d}$, and so their product $a^2 - b^2 d$ is a unit in \mathbb{Z} and therefore equal to ± 1 . Conversely, if $a^2 - b^2 d = \pm 1$, then $a + b\sqrt{d}$ is a unit in \mathcal{O}_K with the inverse $\pm (a - b\sqrt{d})$. Thus

$$\mathcal{O}_{K}^{\times} = \{ a + b\sqrt{d} \mid a, b \in \frac{1}{2}\mathbb{Z}, \ a \equiv b \mod (2), \ a^{2} - b^{2}d = \pm 1 \}.$$

Next, any unit $u \in \mathcal{O}_K^{\times} \setminus \{\pm 1\}$ gives rise to four distinct units $\pm u^{\pm 1}$, one lying in each of the intervals between $-\infty, -1, 0, 1, \infty$. Writing $u = a + b\sqrt{d}$, these are the elements $\pm a \pm b\sqrt{d}$ with all four possibilities of signs, the largest of which being $|a| + |b|\sqrt{d}$. Thus

$$\mathcal{O}_{K}^{\times} \cap \mathbb{R}^{>1} = \{ a + b\sqrt{d} \mid a, b \in \frac{1}{2}\mathbb{Z}^{>0}, \ a \equiv b \bmod{(2)}, \ a^{2} - b^{2}d = \pm 1 \}.$$

The unique fundamental unit $\varepsilon > 1$ is therefore the element $a + b\sqrt{d} \in \mathcal{O}_K^{\times} \cap \mathbb{R}^{>1}$ as above with the smallest value for a.

4. Prove without number theory that the equation $a^2 - b^2 d = -1$ has infinitely many solutions $(a, b) \in \mathbb{Z}^2$ for d = 2, but none for d = 3. Explain the answer with algebraic number theory.

Solution: Elementary solution using renaissance arithmetic only: For d = 2 we find the solution (a, b) = (1, 1) by trial and error. Given a solution (a, b) with a, b > 0, a direct computation shows that $(a^3 + 6ab^2, 3a^2b + 2b^2)$ is another solution with strictly larger coefficients. Thus there exist infinitely many solutions. For d = 3 the equation implies that $a^2 \equiv 2 \mod (3)$, which is not solvable in $\mathbb{Z}/3\mathbb{Z}$.

Explanation: Let $K := \mathbb{Q}(\sqrt{d}) \subset \mathbb{R}$. In both cases we have $d \not\equiv 1 \mod (4)$ and hence $\mathcal{O}_K = \mathbb{Z}[\sqrt{d}]$. A general element has norm $\operatorname{Norm}_{K/\mathbb{Q}}(a + b\sqrt{d}) = a^2 - b^2 d$, so we want to find all elements of norm -1. Any such element is a unit in \mathcal{O}_K^{\times} . From the lecture we know that $\mathcal{O}_K^{\times} = \{\pm 1\} \times \varepsilon^{\mathbb{Z}}$ for a fundamental unit $\varepsilon > 1$. Since $\operatorname{Norm}_{K/\mathbb{Q}}$ is multiplicative and $\operatorname{Norm}_{K/\mathbb{Q}}(-1) = 1$, we deduce that

$$\{a+b\sqrt{d} \in \mathcal{O}_K \mid a^2-b^2d = -1\} = \begin{cases} \{\pm \varepsilon^m \mid m \in \mathbb{Z} \text{ odd}\} & \text{if } \operatorname{Norm}_{K/\mathbb{Q}}(\varepsilon) = -1, \\ \emptyset & \text{if } \operatorname{Norm}_{K/\mathbb{Q}}(\varepsilon) = 1. \end{cases}$$

Moreover, by Proposition 5.4.2 we have $\varepsilon = a + b\sqrt{d}$ for $a, b \in \mathbb{Z}^{>0}$ with $a^2 - b^2 d = \pm 1$ and a minimal, which we can find by trial and error.

For d = 2 the element $1 + \sqrt{2}$ is a fundamental unit with $\operatorname{Norm}_{K/\mathbb{Q}}(1 + \sqrt{2}) = 1^2 - 1^2 \cdot 2 = -1$; hence we are in the first case.

For d = 3 the element $2 + \sqrt{3}$ is a unit with $\operatorname{Norm}_{K/\mathbb{Q}}(2 + \sqrt{3}) = 2^2 - 1^2 \cdot 3 = 1$. On the other hand \mathcal{O}_K has discriminant 4d = 12; hence by Proposition 5.4.5 of the lecture the fundamental unit $\varepsilon > 1$ satisfies $\varepsilon \ge \frac{\sqrt{12} + \sqrt{12} - 4}{2} = \sqrt{3} + \sqrt{2}$. Since $(\sqrt{3} + \sqrt{2})^2 > 2 + \sqrt{3} > 1$, we cannot have $2 + \sqrt{3} = \varepsilon^k$ with an integer k > 1, so $2 + \sqrt{3} = \varepsilon$ is already a fundamental unit. Therefore we are in the second case.

- 5. (a) For any number field K, a subring $\mathcal{O} \subset \mathcal{O}_K$ of finite index is called an *order* in \mathcal{O}_K . For any such order prove that \mathcal{O}^{\times} is a subgroup of finite index in \mathcal{O}_K^{\times} .
 - (b) Consider a squarefree integer d > 1 with $d \equiv 1 \mod (4)$, so that $K := \mathbb{Q}(\sqrt{d})$ has the ring of integers $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$. Explain the precise relation between $\mathbb{Z}[\sqrt{d}]^{\times}$ and \mathcal{O}_K^{\times} .

Solution: (a) Any ring homomorphism induces a homomorphism for the groups of units. Thus the embedding $\mathcal{O} \hookrightarrow \mathcal{O}_K$ induces an embedding $\mathcal{O}^{\times} \hookrightarrow \mathcal{O}_K^{\times}$ of groups. Next set $m := [\mathcal{O}_K : \mathcal{O}]$. Then $m\mathcal{O}_K \subset \mathcal{O}$, so we have an embedding $\mathcal{O}/m\mathcal{O}_K \hookrightarrow \mathcal{O}_K/m\mathcal{O}_K$ and hence a homomorphism of abelian groups $(\mathcal{O}/m\mathcal{O}_K)^{\times} \hookrightarrow (\mathcal{O}_K/m\mathcal{O}_K)^{\times}$. From this we deduce that \mathcal{O}^{\times} is the kernel of the composite homomorphism

$$\mathcal{O}_K^{\times} \to (\mathcal{O}_K/m\mathcal{O}_K)^{\times} \twoheadrightarrow (\mathcal{O}_K/m\mathcal{O}_K)^{\times} / (\mathcal{O}/m\mathcal{O}_K)^{\times}$$

Since the target is a finite group, it follows that $[\mathcal{O}_K^{\times} : \mathcal{O}^{\times}]$ is finite.

(b) Here we have m = 2, and the minimal polynomial of $\omega := \frac{1+\sqrt{d}}{2}$ over \mathbb{Z} is

$$P(X) := (X - \frac{1 + \sqrt{d}}{2})(X - \frac{1 - \sqrt{d}}{2}) = X^2 - X + \frac{1 - d}{4}.$$

Hence $\mathcal{O}_K \cong \mathbb{Z}[X]/(P(X))$.

Assume first that $d \equiv 1 \mod (8)$. Then $P(X) \equiv X(X-1) \mod (2)$ and hence $\mathcal{O}_K/2\mathcal{O}_K \cong \mathbb{F}_2[X]/(X(X-1)) \cong (\mathbb{F}_2)^2$. Thus $(\mathcal{O}_K/2\mathcal{O}_K)^{\times} = 1$, which by the construction in (a) implies that $\mathcal{O}^{\times} = \mathcal{O}_K^{\times}$.

In the other case we have $d \equiv 5 \mod (8)$. Then $P(X) \equiv X^2 + X + 1 \mod (2)$, which is irreducible in $\mathbb{F}_2[X]$. Thus $\mathcal{O}_K/2\mathcal{O}_K \cong \mathbb{F}_2[X]/(X^2 + X + 1)$ is a field of order 4, and so $(\mathcal{O}_K/2\mathcal{O}_K)^{\times}$ is a cyclic group of order 3. From the construction in (a) it follows that $\mathbb{Z}[\sqrt{d}]^{\times}$ is a subgroup of \mathcal{O}_K^{\times} of index dividing 3.

In either case this shows that $\mathbb{Z}[\sqrt{d}]^{\times}$ is a subgroup of \mathcal{O}_{K}^{\times} of index 1 or 3. The case $d \equiv 1 \mod (8)$ shows that the index 1 actually occurs, and the example of d = 13 explained in the lecture course shows that the index 3 also occurs.

- 6. (a) Determine the ring of integers of $K := \mathbb{Q}(\sqrt{5}, i)$.
 - (b) Determine \mathcal{O}_F^{\times} for the subfield $F := \mathbb{Q}(\sqrt{5})$.
 - (c) Find a fundamental unit of \mathcal{O}_K^{\times} .
 - (d) Show that $|\mu(K)| = 4$ and write down \mathcal{O}_K^{\times} .

Solution:

- (a) Consider the subfields $F := \mathbb{Q}(\sqrt{5})$ and $F' := \mathbb{Q}(i) = \mathbb{Q}(\sqrt{-1})$. Since $5 \equiv 1 \mod 4$ and $-1 \not\equiv 1 \mod 4$, their discriminants are $\operatorname{disc}(\mathcal{O}_F) = 5$ and $\operatorname{disc}(\mathcal{O}_{F'}) = -4$ and hence coprime. Furthermore, the fields F and F' are linearly disjoint, since $[FF'/\mathbb{Q}] = [K/\mathbb{Q}] = 4 = [F/\mathbb{Q}] \cdot [F'/\mathbb{Q}]$. Therefore Theorem 1.8.3 implies that $\mathcal{O}_K \cong \mathcal{O}_F \otimes_{\mathbb{Z}} \mathcal{O}_{F'} \cong \mathbb{Z}[\frac{1+\sqrt{5}}{2}, i]$. In particular a \mathbb{Z} -basis of \mathcal{O}_K is $1, \frac{1+\sqrt{5}}{2}, i, i\frac{1+\sqrt{5}}{2}$.
- (b) By Proposition 5.4.2, the element $\varepsilon := a + b\sqrt{5} \in \mathcal{O}_F$ with minimal $a, b \in \frac{1}{2}\mathbb{Z}^{>0}$ such that $\operatorname{Norm}_{F/\mathbb{Q}}(\varepsilon) = \pm 1$ is a fundamental unit in \mathcal{O}_F^{\times} . By a direct calculation, we verify that $\varepsilon := \frac{1+\sqrt{5}}{2}$ already has norm -1 and hence is a fundamental unit. It follows that $\mathcal{O}_F^{\times} = \{\pm 1\} \times \varepsilon^{\mathbb{Z}}$.
- (c) The field K has (r, s) = (0, 2) and hence $\mathcal{O}_K^{\times} = \mu(K) \times \tilde{\varepsilon}^{\mathbb{Z}}$ for some fundamental unit $\tilde{\varepsilon} \in \mathcal{O}_K^{\times}$. In view of (b) it follows that $\zeta \tilde{\varepsilon}^n = \varepsilon^{\pm 1}$ for some $n \ge 1$ and $\zeta \in \mu(K)$. After possibly replacing $\tilde{\varepsilon}$ with $\tilde{\varepsilon}^{-1}$ and ζ with ζ^{-1} , we may assume that $\zeta \tilde{\varepsilon}^n = \varepsilon$. Writing $\operatorname{Norm}_{K/F}(\tilde{\varepsilon}) = \pm \varepsilon^k$ with $k \in \mathbb{Z}$, we deduce that

$$\varepsilon^2 = \operatorname{Norm}_{K/F}(\varepsilon) = \operatorname{Norm}_{K/F}(\zeta \tilde{\varepsilon}^n) = \pm \operatorname{Norm}_{K/F}(\tilde{\varepsilon})^n = \pm (\pm \varepsilon^k)^n,$$

which implies that kn = 2. Suppose that n = 2 and hence k = 1. Write $\tilde{\varepsilon} = a + b\frac{1+\sqrt{5}}{2} + ci + di\frac{1+\sqrt{5}}{2}$ with $a, b, c, d \in \mathbb{Z}$. Then

$$\pm \frac{1+\sqrt{5}}{2} = \pm \varepsilon = \operatorname{Norm}_{K/F}(\tilde{\varepsilon}) = \tilde{\varepsilon}\bar{\tilde{\varepsilon}} = (a^2+b^2+c^2+d^2) + (2ab+b^2+2cd+d^2)\frac{1+\sqrt{5}}{2}.$$

Comparing coefficients implies that $a^2 + b^2 + c^2 + d^2 = 0$ and hence a = b = c = d = 0. This contradicts the fact that $\tilde{\varepsilon} \neq 0$. Therefore n = 1 and $\tilde{\varepsilon} = \zeta^{-1}\varepsilon$ is also a fundamental unit in \mathcal{O}_K^{\times} . Since the fundamental unit of K is only determined up multiplication with an element of $\mu(K)$ and taking its inverse, we conclude that ε is a fundamental unit in \mathcal{O}_K^{\times} .

(d) Let ζ be a generator of $\mu(K)$ and let n be the order of ζ . Then $[\mathbb{Q}(\zeta)/\mathbb{Q}] = \varphi(n)$, where $\varphi(\cdot)$ denotes the Euler φ -function, and this divides $[K/\mathbb{Q}] = 4$. On the other hand, since $i \in K$, we have $n = 2^k m$ with m odd and $k \ge 2$ and hence $\varphi(n) = (2^k - 2^{k-1})\varphi(m) = 2^{k-1}\varphi(m)$. Together this leaves only the possibilities n = 4, 8, 12.

If
$$n = 8$$
, we have $\zeta = \frac{\pm 1 \pm i}{\sqrt{2}}$ and hence $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\zeta + \overline{\zeta}) \subset K$.
If $n = 12$, we have $\zeta^4 = \frac{-1 \pm \sqrt{-3}}{2}$ and hence $\mathbb{Q}(\sqrt{-3}) = \mathbb{Q}(\zeta^4) \subset K$.

But the extension K/\mathbb{Q} is galois with a non-cyclic Galois group of order 4; hence by Galois theory it contains precisely three different quadratic subfields. Since $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(i\sqrt{5}) = \mathbb{Q}(\sqrt{-5})$ are all contained in Kand non-isomorphic by the classification of quadratic number fields, these are precisely all quadratic subfields of K. Again by the classification of quadratic number fields, none of them is isomorphic to $\mathbb{Q}(\sqrt{2})$ or $\mathbb{Q}(\sqrt{-3})$. Thus the cases n = 8, 12 are impossible, leaving only n = 4.

In conclusion, we have $|\mu(K)| = 4$ and $\mathcal{O}_K^{\times} = \{\pm 1, \pm i\} \times (\frac{1+\sqrt{5}}{2})^{\mathbb{Z}}$.